SYMPLECTIC COUPLES ON 4-MANIFOLDS

HANSJÖRG GEIGES

1. Introduction. Let M be a (smooth, connected, oriented) 4-manifold. Recall that a symplectic form on M is a closed, nondegenerate differential 2-form ω , where nondegeneracy means that ω^2 is a volume form on M. In the present paper, we consider the following structure.

Definition 1.1. (i) A pair of symplectic forms (ω_1, ω_2) on M is called a symplectic couple if $\omega_1 \wedge \omega_2 \equiv 0$ and ω_1^2, ω_2^2 are volume forms defining the positive orientation.

(ii) We say that three symplectic forms $(\omega_1, \omega_2, \omega_3)$ constitute a symplectic triple if $\omega_i \wedge \omega_j \equiv 0$ for $i \neq j$ and the ω_i^2 are positive volume forms.

(iii) A symplectic couple (triple) is called *conformal* if $\omega_1^2 = \omega_2^2 (= \omega_3^2)$.

Our motivation to study symplectic couples and triples is twofold. First, observe that if (ω_1, ω_2) is a symplectic couple, then any nontrivial linear combination $\lambda_1 \omega_1 + \lambda_2 \omega_2$, $(\lambda_1, \lambda_2) \in \mathbb{R}^2 - (0, 0)$, is again a symplectic form. Furthermore, if (ω_1, ω_2) is conformal, then $\lambda_1 \omega_1 + \lambda_2 \omega_2$ defines the same volume form as ω_1 and ω_2 for any (λ_1, λ_2) on the unit circle S^1 in \mathbb{R}^2 .

Pairs of contact forms (α_1, α_2) with the analogous properties are investigated in [5], and the following is proved there.

THEOREM 1.2. Let N be a closed 3-manifold. Then N admits a pair of contact forms (α_1, α_2) such that $\lambda_1 \alpha_1 + \lambda_2 \alpha_2$ is a contact form defining the same volume form for any $(\lambda_1, \lambda_2) \in S^1$ (equivalently, $\alpha_1 \wedge d\alpha_1 = \alpha_2 \wedge d\alpha_2$ and $\alpha_1 \wedge d\alpha_2 = -\alpha_2 \wedge d\alpha_1$) if and only if N is diffeomorphic to a quotient of the Lie group \mathscr{G} under a discrete subgroup acting by left multiplication, where \mathscr{G} is one of the following:

- (a) $S^3 = SU(2)$, the universal cover of SO(3),
- (b) SL_2 , the universal cover of $PSL_2\mathbb{R}$,
- (c) \tilde{E}_2 , the universal cover of the Euclidean group (of orientation-preserving isometries of \mathbb{R}^2).

Second, our definition of symplectic couple is motivated by the recent work of Lucas Hsu [9], where the condition $\omega_1 \wedge \omega_2 \equiv 0$ is equivalent to a certain pair of first-order partial differential equations, whose solution surfaces are Lagrangian with respect to both ω_1 and ω_2 , to form a system of Euler-Lagrange type.

This second motivation is our main reason for studying symplectic couples

Received 6 January 1995.

Partially supported by a William Colton Research Fellowship at Queens' College, Cambridge.