SYMPLECTIC COUPLES ON 4-MANIFOLDS

HANSJÖRG GEIGES

1. Introduction. Let M be a (smooth, connected, oriented) 4-manifold. Recall that a symplectic form on M is a closed, nondegenerate differential 2-form ω, where nondegeneracy means that ω^{2} is a volume form on M. In the present paper, we consider the following structure.

Definition 1.1. (i) A pair of symplectic forms $\left(\omega_{1}, \omega_{2}\right)$ on M is called a symplectic couple if $\omega_{1} \wedge \omega_{2} \equiv 0$ and $\omega_{1}^{2}, \omega_{2}^{2}$ are volume forms defining the positive orientation.
(ii) We say that three symplectic forms $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ constitute a symplectic triple if $\omega_{i} \wedge \omega_{j} \equiv 0$ for $i \neq j$ and the ω_{i}^{2} are positive volume forms.
(iii) A symplectic couple (triple) is called conformal if $\omega_{1}^{2}=\omega_{2}^{2}\left(=\omega_{3}^{2}\right)$.

Our motivation to study symplectic couples and triples is twofold. First, observe that if $\left(\omega_{1}, \omega_{2}\right)$ is a symplectic couple, then any nontrivial linear combination $\lambda_{1} \omega_{1}+\lambda_{2} \omega_{2},\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}^{2}-(0,0)$, is again a symplectic form. Furthermore, if $\left(\omega_{1}, \omega_{2}\right)$ is conformal, then $\lambda_{1} \omega_{1}+\lambda_{2} \omega_{2}$ defines the same volume form as ω_{1} and ω_{2} for any (λ_{1}, λ_{2}) on the unit circle S^{1} in \mathbb{R}^{2}.

Pairs of contact forms (α_{1}, α_{2}) with the analogous properties are investigated in [5], and the following is proved there.

Theorem 1.2. Let N be a closed 3-manifold. Then N admits a pair of contact forms (α_{1}, α_{2}) such that $\lambda_{1} \alpha_{1}+\lambda_{2} \alpha_{2}$ is a contact form defining the same volume form for any $\left(\lambda_{1}, \lambda_{2}\right) \in S^{1}$ (equivalently, $\alpha_{1} \wedge d \alpha_{1}=\alpha_{2} \wedge d \alpha_{2}$ and $\alpha_{1} \wedge d \alpha_{2}=-\alpha_{2} \wedge d \alpha_{1}$) if and only if N is diffeomorphic to a quotient of the Lie group \mathscr{G} under a discrete subgroup acting by left multiplication, where \mathscr{G} is one of the following:
(a) $S^{3}=S U(2)$, the universal cover of $S O(3)$,
(b) $\widetilde{S L}_{2}$, the universal cover of $P S L_{2} \mathbb{R}$,
(c) \tilde{E}_{2}, the universal cover of the Euclidean group (of orientation-preserving isometries of \mathbb{R}^{2}).

Second, our definition of symplectic couple is motivated by the recent work of Lucas Hsu [9], where the condition $\omega_{1} \wedge \omega_{2} \equiv 0$ is equivalent to a certain pair of first-order partial differential equations, whose solution surfaces are Lagrangian with respect to both ω_{1} and ω_{2}, to form a system of Euler-Lagrange type.

This second motivation is our main reason for studying symplectic couples

