CHOW RINGS OF INFINITE SYMMETRIC PRODUCTS SHUN-ICHI KIMURA AND ANGELO VISTOLI

Introduction. Let A be an Abelian variety, N an integer with $N \ge 2$, $N_A: A \to A$ the morphism given by multiplication by N, and $N^* = N_A^*$: CH*(A) \to CH*(A) the pullback on the Chow ring of A. Bloch [Bl] proved that if A is an Abelian surface, then N* acts like multiplication by N^2 on the kernel of the albanese map $CH_0(A) \to Alb(A)$. In 1986, translating K-theoretic results by Mukai [Muk] to the language of Chow groups, Beauville [Be1], [Be2] found the following results:

(i) The *p*-codimensional Chow group (with rational coefficients) of an Abelian variety X decomposes into finite direct sum $\oplus CH_s^p(X)$, where $CH_s^p(X)$ is the eigenspace of the action by the multiplication by N with the eigenvalue N^{2p-s} .

(ii) Let ℓ be the first Chern class of the Poincaré line bundle on $X \times \hat{X}$; then the correspondence

$$\mathscr{F} = \exp(\ell) = \sum_{k=0}^{\infty} \frac{\ell^k}{k!} : X \vdash \hat{X}$$

induces a bijection \mathscr{F}_* : CH(X) \to CH(\hat{X}). The bijection \mathscr{F}_* sends the eigenvalue decomposition to dimension decomposition; more precisely, when $\alpha \in CH^p(X)$, then $\alpha \in CH_s^p(X)$ if and only if $\mathscr{F}_*(\alpha) \in CH^{g-p+s}(\hat{X})$ where $g = \dim(X)$. It also sends Pontryagin product to intersection product, and N_* to N^* . The correspondence $\mathscr{F}^{-1} \circ \ell^k/k!$ is the projector to the eigenspace with the eigenvalue N^{2g-k} by the action of N^* . This correspondence \mathscr{F} is called Fourier transform.

Beauville proves that $CH_s^p(X)$ is 0 for s > p and for $s , and conjectures that <math>CH_s^p(X)$ is 0 also for s < 0. His conjecture holds for p = 0, 1, g - 2, g - 1 and g. So conjecturally, the possible eigenvalues in $CH^p(X)$ are $N^p, N^{p+1}, \ldots, N^{2p}$.

The goal of this paper is to find analogous phenomena for the Chow rings of infinite symmetric products. When X is a smooth connected variety with a fixed-point P and S^nX the nth symmetric product of X, adding the point P determines the morphism $S^nX \to S^{n+1}X$. The infinite symmetric product of X is the "direct limit" of this system of all the finite symmetric products, and we denote it by $S^{\infty}X$.

Unlike in the case of finite-dimensional algebraic varieties, there are (at least) two different notions of Chow groups, namely, Chow homology $CH_*S^{\infty}X$ (classes of cycles of finite dimension) and Chow cohomology $CH^*S^{\infty}X$ (classes of cycles of finite codimension). The Chow homology is the direct limit of Chow groups by pushforwards, graded by dimension, and the Chow cohomology is, roughly

Received 6 December 1993. Revision received 17 January 1996.