ON THE MULTIPLICITIES OF THE DISCRETE SERIES OF SEMISIMPLE LIE GROUPS

KAORU HIRAGA

§0. Introduction. Let Γ be a torsion-free, cocompact, discrete subgroup of $G = SL_2(\mathbb{R})$. Then the dimension of the space $S_k(\Gamma)$ of modular forms of weight k is given by

dim
$$S_k(\Gamma) = \operatorname{Vol}(\Gamma \setminus G) \frac{k-1}{\sqrt{2}\pi}$$
 $(k \ge 3),$

(0.1)

dim
$$S_2(\Gamma) = \operatorname{Vol}(\Gamma \setminus G) \frac{1}{\sqrt{2}\pi} + 1$$
 $(k = 2)$

For our normalization of invariant measures, see §1. (We take B(X, Y) = $\operatorname{trace}(XY)/2$ as the bilinear form normalizing the measures in §1.) When k = 2, the correction term "+1" appears. This kind of correction term for lower weights is of our interest.

We can give a representation theoretic interpretation of the formula (0.1). For a locally compact topological group G and a cocompact discrete subgroup Γ of G, it is proved by I. M. Gel'fand, M. I. Graev, and I. I. Pyatetskii-Shapiro [GGP] that the representation r on $L^2(\Gamma \setminus G)$ by right translation splits into a discrete sum of a countable number of irreducible unitary representations, each of finite multiplicity m_{π} . Let D_k^+ (k = 2, 3, ...) be the holomorphic discrete series representation of $SL_2(\mathbb{R})$. By L. Clozel and P. Delorme [CD2], there exists a pseudocoefficient for any discrete series representation of a linear connected reductive group. Let φ be a pseudocoefficient of D_k^+ . If $k \ge 3$, we have $\Theta_{\pi}(\varphi) = 0$ for any irreducible unitary representation π which is not equivalent to D_k^+ , but if k = 2 we have $\Theta_{\text{Trivial}}(\varphi) = -1$. It follows that the trace formula for φ is

(0.2)
$$m_{D_{k}^{+}} = \operatorname{Vol}(\Gamma \setminus G) \frac{k-1}{\sqrt{2}\pi} \qquad (k \ge 3),$$
$$m_{D_{2}^{+}} = m_{\operatorname{Trivial}} + \operatorname{Vol}(\Gamma \setminus G) \frac{1}{\sqrt{2}\pi} \quad (k = 2).$$

Since the multiplicity m_{Trivial} of the trivial representation is "+1," we have (0.1). It turns out that the contribution of the trivial representation gives the correction

Received 31 August 1995. Revision received 20 January 1996.