TWISTED S-UNITS, p-ADIC CLASS NUMBER FORMULAS, AND THE LICHTENBAUM CONJECTURES

MANFRED KOLSTER, THONG NGUYEN QUANG DO, AND VINCENT FLECKINGER

CONTENTS

0.	Introduction	679
1.	Semilocal pairings and orthogonality	682
2.	Descent modules and periodicity	685
3.	Twisted universal norms	689
4.	Higher <i>p</i> -adic class number formulas	695
5.	Abelian fields and circular units	698
6.	On the Lichtenbaum conjectures	704

0. Introduction. Let F be a number field with ring of integers O_F . For a given *odd* rational prime p let S = S(F) denote the set of primes of F above p. Denote by Ω_S the maximal algebraic S-ramified extension of F and set $G_S = G_S(F) = \text{Gal}(\Omega_S/F)$. It is well known that the p-adic cohomology groups $H^i(G_S(F), \mathbb{Z}_p(m)) = \lim_{i \to i} H^i(G_S(F), \mathbb{Z}/p^n \mathbb{Z}(m)), m \in \mathbb{Z}$, coincide with the étale cohomology groups $H^i(O_F, \mathbb{Z}_p(m))$. This paper is mainly devoted to the study of the cohomology groups $H^1(O_F, \mathbb{Z}_p(m)), m \in \mathbb{Z}$, of some of their interesting subgroups, and of canonically attached p-adic regulators. These results are then used to prove the Lichtenbaum Conjectures for abelian fields.

In a sense this could be considered as a continuation of P. Schneider's paper [35] on the Galois cohomology groups $H^i(G_S, \mathbb{Q}_p/\mathbb{Z}_p(m))$, $m \in \mathbb{Z}$, and as a revisitation of Soulé's papers [39], [40] on higher *p*-adic regulators in *K*-theory. It seems therefore appropriate to recapitulate some of the known results and to give an overview of the new ones.

0.1. The interest in the groups $H^1(O_F, \mathbb{Z}_p(m))$ comes from the fact that they give a unified description, where *m* varies over \mathbb{Z} , of seemingly unrelated arithmetical objects associated with the pair (F, p).

(i) For m = 0, the group $H^1(O_F, \mathbb{Z}_p) = \text{Hom}(G_S(F), \mathbb{Z}_p)$ classifies \mathbb{Z}_p -extensions (in the sense of Galois algebras) of F and has been studied in [10] in relation with the weak Leopoldt Conjecture (see also [11]).

(ii) For m = 1, Kummer theory immediately shows that $H^1(O_F, \mathbb{Z}_p(1)) \cong$

Received 2 December 1995.

Kolster partially supported by NSERC grant OGP 0042510.