ON THE FUNCTORS $C W_{A}$ AND P_{A}

WOJCIECH CHACHÓLSKI

1. Introduction. Let A be a pointed and connected space. A pair of spaces (Y, X) is called a relative A-CW-complex if, roughly speaking, Y can be obtained from X by wedging with suspensions of A and attaching cones on suspensions of A (see [6, Corollary 3.7]). If $A=S^{1}$, then a relative S^{1}-CW-complex is essentially an ordinary relative CW-complex. Any pointed map $f: X \rightarrow Y$ can be factored as a composition $\left(X \rightarrow Y^{\prime} \xrightarrow{p} Y\right)$, where $\left(Y^{\prime}, X\right)$ is a relative A-CWcomplex and p induces a weak equivalence of mapping spaces $p_{*}: \operatorname{map}_{*}\left(A, Y^{\prime}\right) \rightarrow$ $\operatorname{map}_{*}(A, Y)$.
Let X be a pointed space. By factoring $* \rightarrow X$, we get a map $C W_{A} X \rightarrow X$, where $\left(C W_{A} X, *\right)$ is a relative A-CW-complex and the induced map $_{*}\left(A, C W_{A} X\right) \rightarrow$ $m a p_{*}(A, X)$ is a weak equivalence. The assignment $X \mapsto C W_{A} X$ can be made functorial, in such a way that the map $C W_{A} X \rightarrow X$ is natural.

By factoring $X \rightarrow *$, we get a map $X \rightarrow P_{A} X$, where $\left(P_{A} X, X\right)$ is a relative A -CW-complex and the space $\operatorname{map}_{*}\left(A, P_{A} X\right)$ is weakly contractible. The assignment $X \mapsto P_{A} X$ can be made functorial, in such a way that the map $X \rightarrow P_{A} X$ is natural.

The functors $C W_{A}$ and P_{A} are crucial in studying spaces through the "eyes" of A. The functor $C W_{A}$ assigns to a space X the largest subobject $C W_{A} X \rightarrow X$, which is totally "visible" by A, while the functor P_{A} associates with X the largest quotient $X \rightarrow P_{A} X$, which is totally "invisible" by A. The space $C W_{A} X$ contains all the information about X that can be detected by A, while $P_{A} X$ contains all the information about X that cannot be detected by A at all.

The purpose of this paper is to study the relationship between the functors $C W_{A}$ and P_{A}. We study these functors by looking at their images and kernels. The image of $C W_{A}$ (respectively, of P_{A}) is the class of all spaces X, for which there exists Y, such that X is weakly equivalent to $C W_{A} Y$ (respectively, X is weakly equivalent to $P_{A} Y$). The kernel of $C W_{A}$ (respectively, of P_{A}) is the class of all spaces X, for which $C W_{A} X$ is weakly contractible (respectively, $P_{A} X$ is weakly contractible).

We investigate to what extent the following sequence is "exact":

$$
\cdots \xrightarrow{P_{A}} \text { cSpaces }_{*} \xrightarrow{C W_{A}} \text { cSpaces }_{*} \xrightarrow{P_{A}} \text { cSpaces }_{*} \xrightarrow{C W_{A}} \text { cSpaces }_{*} \xrightarrow{P_{A}} \cdots
$$

where c Spaces $_{*}$ is the category of pointed and connected spaces.
As the first result, we prove that the image of P_{A} coincides with the kernel of
Received 3 October 1995.

