ON THE FUNCTORS CW_A AND P_A

WOJCIECH CHACHÓLSKI

1. Introduction. Let A be a pointed and connected space. A pair of spaces (Y, X) is called a relative A-CW-complex if, roughly speaking, Y can be obtained from X by wedging with suspensions of A and attaching cones on suspensions of A (see [6, Corollary 3.7]). If $A = S^1$, then a relative S^1 -CW-complex is essentially an ordinary relative CW-complex. Any pointed map $f: X \to Y$ can be factored as a composition $(X \to Y' \xrightarrow{p} Y)$, where (Y', X) is a relative A-CW-complex and p induces a weak equivalence of mapping spaces $p_*: map_*(A, Y') \to map_*(A, Y)$.

Let X be a pointed space. By factoring $* \to X$, we get a map $CW_A X \to X$, where $(CW_A X, *)$ is a relative A-CW-complex and the induced $map_*(A, CW_A X) \to map_*(A, X)$ is a weak equivalence. The assignment $X \mapsto CW_A X$ can be made functorial, in such a way that the map $CW_A X \to X$ is natural.

By factoring $X \to *$, we get a map $X \to P_A X$, where $(P_A X, X)$ is a relative A-CW-complex and the space $map_*(A, P_A X)$ is weakly contractible. The assignment $X \mapsto P_A X$ can be made functorial, in such a way that the map $X \to P_A X$ is natural.

The functors CW_A and P_A are crucial in studying spaces through the "eyes" of A. The functor CW_A assigns to a space X the largest subobject $CW_A X \to X$, which is totally "visible" by A, while the functor P_A associates with X the largest quotient $X \to P_A X$, which is totally "invisible" by A. The space $CW_A X$ contains all the information about X that can be detected by A, while $P_A X$ contains all the information about X that cannot be detected by A at all.

The purpose of this paper is to study the relationship between the functors CW_A and P_A . We study these functors by looking at their images and kernels. The image of CW_A (respectively, of P_A) is the class of all spaces X, for which there exists Y, such that X is weakly equivalent to $CW_A Y$ (respectively, X is weakly equivalent to $P_A Y$). The kernel of CW_A (respectively, of P_A) is the class of all spaces X, for which class of all spaces X, for which $CW_A X$ is weakly contractible (respectively, $P_A X$ is weakly contractible).

We investigate to what extent the following sequence is "exact":

 $\cdots \xrightarrow{P_A} cSpaces_* \xrightarrow{CW_A} cSpaces_* \xrightarrow{P_A} cSpaces_* \xrightarrow{CW_A} cSpaces_* \xrightarrow{P_A} \cdots$

where cSpaces, is the category of pointed and connected spaces.

As the first result, we prove that the image of P_A coincides with the kernel of

Received 3 October 1995.