LERAY'S QUANTIZATION OF PROJECTIVE DUALITY ANDREA D'AGNOLO AND PIERRE SCHAPIRA

CONTENTS

1.	Introduction	453
2.	Review on correspondences for sheaves and \mathcal{D} -modules	455
	2.1. Notations	456
	2.1.1. Geometry	456
	2.1.2. Sheaves	456
	2.1.3. <i>D</i> -modules	456
	2.1.4. <i>&</i> -modules	457
	2.2. Correspondences for sheaves and D-modules	458
3.	Globally defined contact transformations	462
	3.1. Main theorem	462
	3.2. Another approach, using kernels	465
4.	Projective duality	469
	4.1. Main theorem	469
	4.2. Another approach, using kernels	473
5.	Applications	478
	5.1. On a theorem of Martineau	478
	5.2. Real projective duality	484
	5.3. Other applications	489
A	ppendices	
	A. The functors of temperate and formal cohomology	490
	B. Kernels	492
	C. Final comments	493

1. Introduction. Let \mathbb{P} be a complex *n*-dimensional projective space, \mathbb{P}^* the dual projective space, and \mathbb{A} the hypersurface of $\mathbb{P} \times \mathbb{P}^*$ given by the incidence relation $\mathbb{A} = \{(z, \zeta) \in \mathbb{P} \times \mathbb{P}^*; \langle z, \zeta \rangle = 0\}$. We shall consider the correspondence $\mathbb{P} \xleftarrow{f} \mathbb{A} \xrightarrow{g} \mathbb{P}^*$, where f and g are the natural projections.

It is well known that the conormal bundle to \mathbb{A} in $\mathbb{P} \times \mathbb{P}^*$ is the Lagrangian manifold associated to a contact transformation between $\dot{T}^*\mathbb{P}$ and $\dot{T}^*\mathbb{P}^*$, the cotangent bundles to \mathbb{P} and \mathbb{P}^* , respectively, with the zero-section removed. This contact transformation induces an equivalence of categories between constructible sheaves on \mathbb{P} modulo locally constant sheaves and the similar category on \mathbb{P}^* (cf. Brylinski [5]), or between coherent \mathscr{D} -modules on \mathbb{P} modulo flat con-

Received 14 March 1995. Revision received 1 December 1995.