WAVE-TRACE INVARIANTS

VICTOR GUILLEMIN

1. Introduction. Let X be a compact (n+1)-dimensional manifold and H a positive selfadjoint elliptic pseudodifferential operator of order 1 operating on the space of smooth half-densities, $C^{\infty}(X, \Omega^{1/2})$. The "wave trace" in our title refers to the sum over the eigenvalue, λ_k , of H:

$$e(t) = \sum e^{i\lambda_k t}.$$

By [Ch] and [DG], this is a tempered distribution in t with the following properties.

1. Let $\sigma(H)(x,\xi)$ be the leading symbol of H, and let Ξ be the Hamiltonian vector field on $T^*X - 0$ associated with $\sigma(H)$:

$$\Xi = \sum \frac{\partial}{\partial \xi_i} \sigma(H) \frac{\partial}{\partial x_i} - \frac{\partial}{\partial x_i} \sigma(H) \frac{\partial}{\partial \xi_i}.$$

Then a necessary condition for a real number, T, to be in the singular support of e(t) is that there exist a periodic trajectory, γ , of Ξ of period T (i.e., $\gamma(0) = \gamma(T)$).

2. Moreover, if γ is nondegenerate, it contributes to the wave trace a singularity of the form

(1.1)
$$e_{\gamma}(t) \sim \sum_{r=1}^{\infty} c_r (t - T + i0)^{-2+r} \log(t - T + i0);$$

and the coefficient, c_1 , of the leading term in (1.1) is given by the formula

(1.2)
$$\frac{T_{\gamma}}{2\pi} i^{\sigma_{\gamma}} \left| \det(I - P_{\gamma}) \right|^{-1/2} \exp i \int_{0}^{T} \sigma_{\text{sub}}(H)(\gamma) dt,$$

where T_{γ} is the primitive period of γ (i.e., $\gamma(t) \neq \gamma(0)$ for $0 < t < T_{\gamma}$ and $\gamma(0) = \gamma(t)$ when $t = T_{\gamma}$), σ_{γ} is the Maslov index of γ , P_{γ} is the linearized Poincaré map about γ , and $\sigma_{\text{sub}}(H)$ is the subprincipal symbol of H (see [DG, §4].)

The wave-trace invariants that we will be concerned with in this article are the higher order terms in (1.1). In particular, one of our goals will be to verify a con-

Received 9 January 1995. Revision received 18 July 1995. Author supported by National Science Foundation grant DMS 890771.