CUSP FORMS OF WEIGHT 1 ASSOCIATED TO FERMAT CURVES

TONGHAI YANG

0. Introduction. Let Γ be a subgroup of $S L(2, \mathbb{Z})$ of finite index and k a positive integer. Let $M_{k}(\Gamma)$ and $S_{k}(\Gamma)$ be the spaces of modular forms and of cusp forms of weight k for Γ, respectively. Then modular forms of weight k for Γ can be viewed as sections of invertible sheaves (line bundles) on the corresponding modular curve $X(\Gamma)$; see for example [Mi]. Now the Riemann-Roch theorem gives explicit formulas for the dimensions of $M_{k}(\Gamma)$ and $S_{k}(\Gamma)$ when $k \geqslant 2$. For $k=1$, however, the Riemann-Roch theorem does not provide an explicit formula. This is not surprising, because theorems of Weil, Jacquet-Langlands, and DeligneSerre (see, for example, [Se] or [DS]) tells us that there is a one-to-one correspondence between cusp newforms for $\Gamma_{0}(N)$ of type $(1, \varepsilon)$ and two-dimensional irreducible Artin representations of conductor N and odd determinant ε satisfying the Artin conjecture. (By an Artin representation we mean a continuous finitedimensional complex linear representation of the Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.) Langlands [La] and Tunnell [Tu] proved the Artin conjecture except for the type A_{5}. One would not expect a simple application of the Riemann-Roch theorem to give us deep results concerning Galois representations. In this note, however, we will give a very simple formula for the dimensions of the spaces of modular and of cusp forms of weight 1 for $\Phi(N)$, where $\Phi(N)$ is the subgroup of $S L(2, \mathbb{Z})$ associated to the Fermat curves defined as follows. Let Δ be the free subgroup of $\Gamma(2)$ on generators $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$. One has $\Gamma(2)=\{ \pm I\} \Delta$. Given a positive integer $N \geqslant 1$, the so-called Fermat group $\Phi(N)$ is defined as the subgroup of Δ generated by A^{N}, B^{N}, and the commutator $[\Delta, \Delta]$. The modular curve $X(\Phi(N))$ is isomorphic to the well-known Fermat curve $F_{N}: X^{N}+Y^{N}=Z^{N}$. In this article, we construct a canonical basis for the space of modular forms and cusp forms for $\Phi(N)$ of weight 1 . In particular, one has the following.

Theorem 1

$$
\begin{gather*}
\operatorname{dim} M_{1}(\Phi(N))=\frac{([N / 2]+1)([N / 2]+2)}{2} \tag{1}\\
\operatorname{dim} S_{1}(\Phi(N))=\frac{([(N-1) / 2]-1)[(N-1) / 2]}{2} .
\end{gather*}
$$

Received 2 May 1994. Revision received 23 August 1995.

