INTEGRABLE SYSTEMS AND ALGEBRAIC SURFACES

J. C. HURTUBISE

1. Introduction. Of the completely integrable Hamiltonian systems, those which are algebraically integrable [AvM1], [AvM2], [vM] occupy a privileged position. Roughly speaking, these are complex integrable systems, such that the joint level sets of the Hamiltonians when compactified and desingularized are Abelian varieties, in such a way that the linear structure given by the Hamiltonian flow is that of the Abelian variety. These systems have various desirable properties, such as the Painlevé property [AvM1], and comprise many of the most interesting classical examples.

A particularly nice class of examples is given by some natural systems on the coadjoint orbits of a loop algebra $\tilde{\mathfrak{g}}_{+}$of polynomials in one variable λ with values in a finite-dimensional semisimple Lie algebra \mathfrak{g} [AvM3], [AHP], [B], [FRS], [RS]. (We will return to these systems at greater length in Section 4, and will simply summarize here some of their features, as these systems are our motivating examples.) Via a trace residue pairing, the dual of $\tilde{\mathfrak{g}}_{+}$can be identified with the Lie algebra $\tilde{\mathfrak{g}}_{-}$of power series in λ^{-1}. One can show $[\mathrm{H}]$ that the finitedimensional orbits in $\tilde{\mathfrak{g}}_{-} \simeq\left(\tilde{\mathfrak{g}}_{+}\right)^{*}$ are of elements of the form

$$
\begin{equation*}
N(\lambda)=\frac{L(\lambda)}{a(\lambda)} \tag{1.1}
\end{equation*}
$$

where $a(\lambda)=\prod_{i=1}^{n}\left(\lambda-\alpha_{i}\right) \in \mathbb{C}[\lambda], L(\lambda) \in \tilde{\mathfrak{s l}(r)_{+}}$, degree $(L(\lambda))<$ degree $(a(\lambda))$, and one expands around $\lambda=\infty$ to obtain a series in λ^{-1}. We note that the group G corresponding to g acts naturally on these orbits, and one can reduce the orbits by this action.

Let us take \mathfrak{g} to be $\mathfrak{s l}(r, \mathbb{C})$. At the heart of the integrable systems one considers on the orbit are the spectral curves \mathscr{S}_{0} in \mathbb{C}^{2}, cut out by

$$
\begin{equation*}
\operatorname{det}(N(\lambda)-z \mathbb{I})=0 \tag{1.2}
\end{equation*}
$$

The commuting Hamiltonians considered are the coefficients of the polynomials defining the spectral curve. They are invariant under the G-action.

To $N(\lambda)$, one can also associate a line bundle E, given over S_{0} as the cokernel of $(N(\lambda)-z \mathbb{I})$. This bundle extends naturally to a natural compactification S of S_{0}. [AHH1] On the reductions \mathscr{R} of the orbits by the $S L(r, \mathbb{C})$ dction, the pair

[^0]
[^0]: Received 13 December 1994. Revision received 1 August 1995.
 The author thanks NSERC and FCAR for their support.

