MINIMUM HIGHER EIGENVALUES OF LAPLACIANS ON GRAPHS

JOEL FRIEDMAN

1. Introduction. Let $G=(V, E)$ be an undirected graph on n vertices (we allow multiple edges, self loops, and half-loops). The Laplacian of G, Δ, is the matrix $D-A$, in which A is G 's adjacency matrix and D is the diagonal matrix whose (v, v) entry is the degree of v. If G is connected then it is well-known that Δ 's eigenvalues, $\mu_{1} \leqslant \mu_{2} \leqslant \cdots \leqslant \mu_{n}$ satisfy $\mu_{1}=0$ and $\mu_{2}>0$.

In this article we will find (more or less explicitly) the smallest possible i th eigenvalue of Δ for a connected graph on n vertices; we will give examples of graphs achieving this value, and determine when there is a unique graph achieving this value.

The case $i \nmid n$ is the simplest to discuss. Examples of graphs achieving the smallest value are stars, which we define as follows.

Definition 1.1. By a star of degree i we mean a tree with one vertex (the center) of degree i and all other interior vertices of degree 2. Equivalently it is a graph consisting of i paths whose terminal vertices are all the same (all others being distinct). The arms of the star are the i paths; the length of the arm is the number of edges in it.

Figure 1 depicts a star of degree 3 with arms of length 4, 3, and 3.
Theorem 1.2. Let G be a connected graph on n vertices, and let $i \geqslant 2$ be an integer with $i \nmid n$. Then

$$
\mu_{i}(G) \geqslant 2-2 \cos [\pi /(2 m+1)],
$$

where $m=\lfloor n / i\rfloor$. If $n \equiv 1(\bmod i)$, then equality holds only for the star of degree i

A star of degree 3

A comb with 4 teeth

Figure 1. A star and a comb

Received 21 November 1994. Revision received 1 August 1995.

