NEW DUAL PAIR CORRESPONDENCES

JING-SONG HUANG, PAVLE PANDŽIĆ, AND GORDAN SAVIN

Introduction. Let g be an exceptional complex Lie algebra of type \mathbf{F}_4 , \mathbf{E}_6 , \mathbf{E}_7 , or \mathbf{E}_8 . Then g has a unique real form g_0 with real rank four (see [OV], pages 315–316). Let G be the simply connected algebraic group defined over \mathbb{R} such that the Lie algebra of $G(\mathbb{R})$ is g_0 . These four groups form a family indexed by the four alternative real algebras \mathbb{R} , \mathbb{C} , \mathbb{H} , and \mathbb{O} of dimensions z = 1, 2, 4, and 8. Gross and Wallach [GW] constructed a minimal unitary representation \tilde{V} of $G(\mathbb{R})$ (or the twofold cover $\tilde{G}(\mathbb{R})$ in the case \mathbf{F}_4). Another construction of the minimal representation \tilde{V} has been announced by Brylinski and Kostant [BK].

Let Q be one of the four alternative algebras. Let J_Q be the real Jordan algebra consisting of hermitian 3×3 matrices with coefficients in Q. Let H be a connected algebraic group defined over \mathbb{R} such that $H(\mathbb{R})$ is the connected component of the automorphism group of J_Q . Note that $H(\mathbb{R})$ is compact. Let $G_2(\mathbb{R})$ be the split real algebraic group of type G_2 . Then $G_2(\mathbb{R}) \times H(\mathbb{R})$ is a dual reductive pair in $G_{ad}(\mathbb{R})$, the quotient of $G(\mathbb{R})$ by its center. In this paper we restrict \tilde{V} to $G_2(\mathbb{R}) \times H(\mathbb{R})$.

We obtain a decomposition

$$\widetilde{V}|_{\mathbf{G}_{2}(\mathbb{R})\times H(\mathbb{R})}=\oplus\Theta(E)\otimes E,$$

where the sum is taken over (some) finite-dimensional, irreducible representations E of $H(\mathbb{R})$. We show that $\Theta(E)$ is an irreducible representation of $G_2(\mathbb{R})$ (or the twofold cover $\tilde{G}_2(\mathbb{R})$ in the case F_4) and describe it in terms of Vogan's classification [V].

The correspondence $E \leftrightarrow \Theta(E)$ is one-to-one in all cases but one. In the \mathbf{E}_6 case, we get that $\Theta(E) \cong \Theta(E^*)$. This, however, has a natural explanation. The Dynkin diagram of type \mathbf{E}_6 has an automorphism of order two. The corresponding automorphism of $G(\mathbb{R})$ fixes $\mathbf{G}_2(\mathbb{R})$ and induces an automorphism of $H(\mathbb{R})$ which sends E into E^* . A similar result was obtained in [S].

In the cases E_n , (n = 6, 7, 8), we have obtained correspondences of representations of algebraic groups, so it is tempting to ask whether they are new examples of the Langlands correspondences. Indeed, for n = 6, 7, the groups G_2 and H are of almost equal rank, i.e., their ranks differ at most by one, and we formulate the correspondences in terms of L-packets. For n = 8, however, H is much bigger,

Received 29 November 1994. Revision received 29 June 1995.

Savin partially supported by a National Science Foundation postdoctoral fellowship and a Sloan research fellowship.