NEW DUAL PAIR CORRESPONDENCES

JING-SONG HUANG, PAVLE PANDŽIĆ, and GORDAN SAVIN

Introduction. Let \mathfrak{g} be an exceptional complex Lie algebra of type $\mathbf{F}_{4}, \mathbf{E}_{6}, \mathbf{E}_{7}$, or \mathbf{E}_{8}. Then \mathfrak{g} has a unique real form g_{0} with real rank four (see [OV], pages $315-316$). Let G be the simply connected algebraic group defined over \mathbb{R} such that the Lie algebra of $G(\mathbb{R})$ is \mathfrak{g}_{0}. These four groups form a family indexed by the four alternative real algebras $\mathbb{R}, \mathbb{C}, \mathbb{H}$, and \mathbb{O} of dimensions $z=1,2,4$, and 8 . Gross and Wallach [GW] constructed a minimal unitary representation \tilde{V} of $G(\mathbb{R})$ (or the twofold cover $\tilde{G}(\mathbb{R})$ in the case \mathbf{F}_{4}). Another construction of the minimal representation \tilde{V} has been announced by Brylinski and Kostant [BK].

Let Q be one of the four alternative algebras. Let J_{Q} be the real Jordan algebra consisting of hermitian 3×3 matrices with coefficients in Q. Let H be a connected algebraic group defined over \mathbb{R} such that $H(\mathbb{R})$ is the connected component of the automorphism group of J_{Q}. Note that $H(\mathbb{R})$ is compact. Let $\mathbf{G}_{2}(\mathbb{R})$ be the split real algebraic group of type \mathbf{G}_{2}. Then $\mathbf{G}_{2}(\mathbb{R}) \times H(\mathbb{R})$ is a dual reductive pair in $G_{a d}(\mathbb{R})$, the quotient of $G(\mathbb{R})$ by its center. In this paper we restrict \tilde{V} to $\mathbf{G}_{2}(\mathbb{R}) \times H(\mathbb{R})$.

We obtain a decomposition

$$
\left.\tilde{V}\right|_{\mathbf{G}_{2}(\mathbb{R}) \times \boldsymbol{H}(\mathbb{R})}=\oplus \Theta(E) \otimes E,
$$

where the sum is taken over (some) finite-dimensional, irreducible representations E of $H(\mathbb{R})$. We show that $\Theta(E)$ is an irreducible representation of $\mathbf{G}_{2}(\mathbb{R})$ (or the twofold cover $\tilde{\mathbf{G}}_{2}(\mathbb{R})$ in the case \mathbf{F}_{4}) and describe it in terms of Vogan's classification [V].

The correspondence $E \leftrightarrow \Theta(E)$ is one-to-one in all cases but one. In the \mathbf{E}_{6} case, we get that $\Theta(E) \cong \Theta\left(E^{*}\right)$. This, however, has a natural explanation. The Dynkin diagram of type \mathbf{E}_{6} has an automorphism of order two. The corresponding automorphism of $G(\mathbb{R})$ fixes $\mathbf{G}_{2}(\mathbb{R})$ and induces an automorphism of $H(\mathbb{R})$ which sends E into E^{*}. A similar result was obtained in [S].
In the cases $\mathbf{E}_{n},(n=6,7,8)$, we have obtained correspondences of representations of algebraic groups, so it is tempting to ask whether they are new examples of the Langlands correspondences. Indeed, for $n=6,7$, the groups \mathbf{G}_{2} and H are of almost equal rank, i.e., their ranks differ at most by one, and we formulate the correspondences in terms of L-packets. For $n=8$, however, H is much bigger,

[^0]
[^0]: Received 29 November 1994. Revision received 29 June 1995.
 Savin partially supported by a National Science Foundation postdoctoral fellowship and a Sloan research fellowship.

