PROPER HOLOMORPHIC MAPPINGS BETWEEN REAL ANALYTIC DOMAINS IN \mathbf{C}^{n}

XIAOJUN HUANG and YIFEI PAN

1. Introduction. Let $D_{1} \Subset \mathbf{C}^{n}$ and $D_{2} \Subset \mathbf{C}^{n}$ be two bounded domains with real analytic boundaries. Let f be a proper holomorphic mapping from D_{1} to D_{2} that can be extended smoothly up to \bar{D}_{1}. Baouendi-Rothschild [BR1] and DiederichFornæss [DF] showed that f extends holomorphically across a boundary point $p \in \partial D_{1}$ if the normal component of f has nonvanishing derivative in the normal direction at p (i.e., $\left.\left(\partial f_{v} / \partial v\right)\right|_{p} \neq 0$). We remark that their theorems are purely of local character and are stronger than what we stated here. (See also closely related work by Lewy [Le], Pincuk [Pi], Webster [We], Diederich-Webster [DW], Bell [Be], Baouendi-Jacobwitz-Treves [BJT], Baouendi-Bell-Rothschild [BBR].) In particular, this is the case when both domains are pseudoconvex. Later in [BR2], Baouendi-Rothschild proved that if the normal component of f is not flat at p, then the condition that $\partial f_{v} / \partial v \neq 0$ holds automatically. More recently, in [BR3], it was proved that the Hopf lemma for the normal component of f holds at $p \in \partial D_{1}$ if $f(p) \in M_{2}$ is minimally convex in a certain sense. On the other hand, there have appeared a circle of papers studying the boundary-unique continuation problems for holomorphic mappings from the upper half-disk in the complex plane. (See [ABR], [BL], [Alx1], [HK], [BR5], [BR6], [Alx2], [HKMP].)

In this paper, we first study the unique continuation property for the normal component of f at p in case $f(p)$ is minimal but not minimally convex, where f is proper as defined above. Our result, together with the already established result of Baouendi-Rothschild in the minimally convex case, yields the following theorem.

Theorem 1. Let $D_{1}, D_{2} \subset \mathbf{C}^{n}$ be bounded domains with M_{1} and M_{2} as part of their boundaries, respectively. Assume that M_{1} and M_{2} are real analytic minimal hypersurfaces and f is a proper holomorphic mapping from D_{1} to D_{2}, that is, C^{∞} smooth up to M_{1} and maps M_{1} into M_{2}. Then the normal component of f is not flat at any point of M_{1}.

As is known, Theorem 1, together with the results in [BR2] and [BR3], enables one to restate the results in [BR1], [DF] (see also the previous work mentioned above) in the following form.

[^0]
[^0]: Received 28 November 1994. Revision received 19 June 1995.
 Pan supported in part by a grant from Purdue Research Foundation.

