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MULTIPLICITY # POINTS ON THETA DIVISORS

ROY SMITH AND ROBERT VARLEY

Let (R) denote the theta divisor of a principally polarized abelian variety (ppav)
A over the complex numbers. Let 9 dim(A) and Sing,,((R)) {p (R)lmult,((R)) >
m}. J. Kollhr I-K, Theorem 17.13] proved that the pair (A, (R)) is log canoni-
cal, hence dim(Singm((R)))< 9- m for each m > 2. In particular, for m 9 + 1,
Sing0+1((R) ; that is, the theta divisor cannot have a point of multiplicity
larger than 9. Kolltr also remarked [K, Remark 17.13.1] that it may be possible
that if dim(Sing,,((R))) O m for some 2 < m < 0, then (A, (R)) is a product of
lower-dimensional ppav’s. (The m 2 case of the question was already well known
as the "No_2 conjecture.") In this paper, we settle affirmatively the case of multi-
plicity m 0.

THEOREM. Let (A, 19) be a o-dimensional ppav over the complex numbers. Sup-
pose that there exists a point of multiplicity 9 on the theta divisor 19. Then (A, 19) is
isomorphic (as ppav) to the product of 9 elliptic curves. In particular, if (A, 19) is
indecomposable (equivalently, if (R) is irreducible), then Singo(O .
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The idea of the proof is to exploit the relation between the self-intersection
number of the cohomology class of (R) and the multiplicities of certain geometric
self-intersections of (R). Briefly, under the assumption that 19 has a point of multi-
plicity 0, a 1-cycle C is constructed in the self-intersection class [(R)-!-1) (using
Kollhr’s theorem), such that C (0- 1)!F, where F is an effective 1-cycle repre-
senting the cohomology class 0-x/(0- 1)! By the Matsusaka-Hoyt criterion,
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