HOLOMORPHIC SYMPLECTOMORPHISMS IN $\mathbb{C}^{2 p}$

JOHN ERIK FORNÆESS and NESSIM SIBONY

1. Introduction. We will discuss biholomorphic symplectomorphisms of $\mathbb{C}^{2 p}$ and study the abundance or nonabundance of periodic or quasi-periodic orbits.

Let $\Omega:=\sum d z_{j} \wedge d w_{j}$ where $(z, w), z=\left(z_{1}, \ldots, z_{p}\right), w=\left(w_{1}, \ldots, w_{p}\right)$ denotes coordinates in $\mathbb{C}^{2 p}$. A biholomorphic map $f: \mathbb{C}^{2 p} \mapsto \mathbb{C}^{2 p}$ is a symplectomorphism if and only if $f^{*}(\Omega)=\Omega$. In the second paragraph, we make some preliminary remarks on biholomorphic symplectomorphisms of $\mathbb{C}^{2 p}$.

In the third paragraph, we study the orbits of a time-independent, holomorphic Hamiltonian in $\mathbb{C}^{2 p}$. We show that generically all orbits go to ∞; see Theorem 3.4.

Paragraph 4 is devoted to a question of Herman. Let S be the space of holomorphic symplectomorphisms of $\mathbb{C}^{2 p}$ with the topology of uniform convergence on compact sets. For $f \in S$, let $K_{f}:=\left\{(z, w) ; f^{n}(z, w)\right.$ is bounded $\}$.

Conjecture 1.1 (Herman). There is $a G_{\delta}$ dense set $S^{\prime} \subset S$ such that for $f \in S^{\prime}$, K_{f} has empty interior.

We confirm Herman's conjecture. The case $p=1$ was done previously in [FS]. The answer to Herman's question in $\mathbb{R}^{2 p}, p>1$, is not known.
2. Holomorphic maps as Hamiltonian flows. Let E denote the space of entire holomorphic functions. We consider each $F \in E$ as a holomorphic Hamiltonian giving rise to a holomorphic vector field $X=X_{F}=\left(-\partial F / \partial w_{1}, \ldots,-\partial F / \partial w_{p}\right.$, $\left.\partial F / \partial z_{1}, \ldots, \partial F / \partial z_{p}\right)$.

Let S denote the space of biholomorphic symplectomorphisms of $\mathbb{C}^{2 p}$. We give S the topology of uniform convergence on compact sets. The following proposition is standard.

Proposition 2.1. Let $\Phi \in S$. Then there exists a C^{∞} function $F(z, w, t)$: $\mathbb{C}^{2 p}{ }_{*}$ $\mathbb{R} \mapsto \mathbb{C}$ with period 1 in t such that $F_{t}(z, w):=F(z, w, t)$ is holomorphic for each t. Moreover, Φ is the time 1 map of the time-dependent holomorphic Hamiltonian vector field

$$
X_{t}=\left(-\partial F / \partial w_{1}, \ldots,-\partial F / \partial w_{p}, \partial F / \partial z_{1}, \ldots, \partial F / \partial z_{p}\right) .
$$

Proof. First, we pick a $C^{\infty} \operatorname{map} G:[0,1] \mapsto S$ so that $G(t) \equiv \mathrm{Id}$ for t small and $G(t) \equiv \Phi$ for t close to 1 . We can write

$$
G(t)(z, w)=\left(P_{1}(z, w, t), \ldots, P_{p}(z, w, t), Q_{1}(z, w, t), \ldots, Q_{p}(z, w, t)\right) .
$$

[^0]
[^0]: Received 5 July 1994.

