OSCILLATORY INTEGRALS AND MAXIMAL AVERAGES OVER HOMOGENEOUS SURFACES

ALEX IOSEVICH AND ERIC SAWYER

CONTENTS

1.	Introduction	103
	1.1. Maximal averages	
	1.2. Oscillatory integrals	
	1.3. Mixed homogeneous surfaces	
2.	Oscillatory estimates	114
	2.1. Radial curvature estimates	
	2.2. Angular curvature estimates	
3.	Three dimensions	131
	3.1. Scaling and nondegenerate curvature estimates	
	3.2. Curvature vanishing beyond the origin	

1. Introduction. Let S be a smooth hypersurface in R^{n+1} , let $d\sigma$ denote Lebesgue measure on S, and let ψ denote a smooth cutoff function in R^{n+1} . Let δ_t denote the dilation $\delta_t h(x, x_{n+1}) = t^{-n} h(t^{-1}x, t^{-1}x_{n+1})$. We consider the convolution operators

$$M_t f(x, x_{n+1}) = f * \delta_t(\psi d\sigma)(x, x_{n+1})$$

and their associated maximal operator

$$\mathcal{M}f(x, x_{n+1}) = \sup_{t>0} M_t f(x, x_{n+1}). \tag{1}$$

It is not obvious that such convolutions are well defined for f in L^p spaces since S has measure zero in \mathbb{R}^{n+1} . Nevertheless, a priori L^p estimates are possible when S has suitable curvature properties. A basic problem is thus to determine the optimal range of indices p such that

$$\|\mathcal{M}f\|_{L^{p}(\mathbb{R}^{n+1})} \leqslant C_{p} \|f\|_{L^{p}(\mathbb{R}^{n+1})},\tag{2}$$

where f is initially taken to be in the class of rapidly decreasing functions.

Received 12 August 1994. Revision received 14 March 1995. Sawyer supported in part by NSERC grant OGP0005149.