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1. Introduction

1.1. Statement of the results, concepts from contact eometry. In the following,
M is a three-dimensional compact manifold. A contact structure on M is a plane
field distribution M defined locally by an equation 2 0. Here 2 is a local
one-form on M such that 2 ^ d2 is nowhere vanishing. Clearly, and f2 deter-
mine the same plane field if the function f does not vanish. Since 2 ^ d2 and
(f2) ^ d(f2) define the same orientation, a contact structure defines a "natural"
orientation on the manifold. If the three-manifold is already oriented, we call
(M, ) a positive contact manifold in case these two orientations coincide; other-
wise, it is a negative contact manifold. A contact structure is co-orientable, if it is
defined globally by 2 0, with a one-form 2 on all of M having the property that
2 ^ d2 is a volume form on M. Such a one-form is a contact form. The set of all
contact forms 2 satisfying kern (2) consists of two components; the choice of
one of them is a co-orientation. A co-orientation can equivalently be defined by
an orientation of the normal bundle TM/ M of the contact structure . Every
compact orientable three-manifold admits a contact form (see Martinet 1-28]).
The standard example of a positive co-oriented contact structure on the three-

sphere is the following. View S3 as the boundary of the one-ball in equipped
with the orientation induced from the complex orientation on . Let TS be
the subbundle whose fibre is the maximal complex subspace of TS. Denote by o
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