BERNSTEIN'S INEQUALITY AND THE RESOLUTION OF SPACES OF ANALYTIC FUNCTIONS

CHARLES FEFFERMAN AND RAGHAVAN NARASIMHAN

0. Introduction. The growth and smoothness properties of polynomials F on \mathbb{R}^n are controlled by standard inequalities of the following type:

$$\sup_{B(x,\rho)} |\nabla F| \leq \frac{C}{\rho} \sup_{B(x,\rho)} |F|$$
(0.1)

$$\sup_{B(x,\rho)} |F| \leq C \sup_{B(x,\rho/2)} |F|$$
(0.2)

$$\sup_{B(x,\rho)} |F| \leq \frac{C}{\rho^n} \int_{B(x,\rho)} |F(y)| \, dy \tag{0.3}$$

$$\sup_{B_c(x,\rho)} |F| \leq C \sup_{B(x,\rho)} |F|.$$
(0.4)

Here, C denotes a constant depending only on the degree of F, while $B(x, \rho)$, $B_c(x, \rho)$ denote the ball, with center x and radius ρ in \mathbb{R}^n and \mathbb{C}^n , respectively.

We call inequalities (0.1)-(0.4) the Bernstein inequalities.

In this article, we shall show that if V_{λ} is a finite-dimensional vector space of real analytic functions of *n* variables depending real-analytically on a parameter $\lambda \in \mathbb{R}^m$, then the Bernstein inequalities (0.1)–(0.4) continue to hold for $F \in V_{\lambda}$, locally uniformly with respect to λ . Thus, our first main result is as follows.

BERNSTEIN THEOREM. Let $F_{1,\lambda}, \ldots, F_{N,\lambda}$ be holomorphic functions on the complex ball $B_c(0, 1 + \varepsilon), \varepsilon > 0$, in \mathbb{C}^n depending real-analytically on $\lambda \in U \subset \mathbb{R}^m$ (U an open set). Let V_{λ} be the linear span of the $F_{k,\lambda}, 1 \leq k \leq N$.

Then, for any compact set $K \subset U$, there is a constant C > 0 such that the Bernstein inequalities (0.1)-(0.4) hold for any $F \in V_{\lambda}$, $\lambda \in K$, and $B(x, \rho) \subset B(0, 1)$.

For example, if $\lambda = (\xi_1, ..., \xi_N) \in (\mathbb{R}^n)^N$ and $V_{\lambda} = \operatorname{span}\{e^{\langle \xi_1, x \rangle}, ..., e^{\langle \xi_N, x \rangle}\}$, the above theorem asserts that (1)-(4) hold for $F \in V_{\lambda}$ with a constant C depending only on upper bounds for $|x|, \rho, |\xi_1|, ..., |\xi_N|$.

The difficulty in proving these uniform estimates comes from the fact that V_{λ} may degenerate (i.e., that its dimension may drop). This difficulty arises already if we attempt to prove (0.1)–(0.4) for a single vector space V_{λ_0} because the estimates

Received 5 August 1994.

Fefferman supported in part by a grant from the National Science Foundation.