ON THE BOUNDARIES OF SPECIAL LAGRANGIAN SUBMANIFOLDS

LEI FU

0. Introduction. In [HL1], Harvey and Lawson prove that Re dz ($dz = dz_1 \wedge$ $\cdots \wedge dz_n$ is a calibration on $\mathbf{C}^n = \mathbf{R}^{2n}$, where $z = (z_1, \ldots, z_n)$ are the coordinates on Cⁿ. Let P be an n-dimensional oriented plane in \mathbb{R}^{2n} with oriented orthonormal basis $\{e_1, \ldots, e_n\}$. Then $\zeta_P = e_1 \wedge \cdots \wedge e_n \in \wedge^n \mathbb{R}^{2n}$ does not depend on the choice of the basis. We say P is special Lagrangian if Re $dz(\zeta_P) = 1$. An n-dimensional oriented submanifold M of C^n is called special Lagrangian if each of its oriented tangent planes is special Lagrangian, or equivalently, if its volume form is given by the restriction of the ambiant form $\operatorname{Re} dz$. Special Lagrangian submanifolds are volume minimizing. One can show that an oriented submanifold M (with proper oriention) is special Lagrangian if and only if the restrictions to M of ω and Im dz are zero, where ω is the standard Kähler/symplectic form on $\mathbf{C}^{\mathbf{a}} = \mathbf{R}^{2\mathbf{a}}$. In particular, special Lagrangian submanifolds are Lagrangian (i.e., the restriction of ω to M is zero). A Lagrangian submanifold is minimal if and only if there exists a real number θ such that its volume form is given by the restriction of $\operatorname{Re}\left\{e^{i\theta} dz\right\}$. Consequently, the study of a minimal Lagrangian submanifold is reduced to the study of a special Lagrangian submanifold. See [HL1] for the details.

On C, special Lagrangian submanifolds are lines parallel to the x-axis and their geometry is trival. Therefore, throughout this paper, we only consider Cⁿ for $n \ge 2$.

To understand the special Lagrangian geometry on \mathbb{C}^2 , we introduce another copy of \mathbb{C}^2 , denoted by \mathscr{C}^2 , and let (w_1, w_2) be its coordinates. Define a diffeomorphism $F: \mathbb{C}^2 \to \mathscr{C}^2$ by $F(z_1, z_2) = (w_1, w_2)$, where $w_1 = x_1 + ix_2$, $w_2 = y_2 + iy_1$, and x_k , y_k are determined by $z_k = x_k + iy_k$ (k = 1, 2). It is easy to see that under this diffeomorphism Re $dz_1 \wedge dz_2$ corresponds to $(i/2)(dw_1 \wedge d\overline{w}_1 + dw_2 \wedge d\overline{w}_2)$. That is, the special Lagrangian calibration Re dz on \mathbb{C}^2 corresponds to the Kähler calibration on \mathscr{C}^2 . So a submanifold of \mathbb{C}^2 is special Lagrangian if and only if it corresponds to a complex submanifold of \mathscr{C}^2 . Therefore the special Lagrangian geometry on \mathbb{C}^2 is the same as the complex geometry on \mathscr{C}^2 .

Let \tilde{J} be the complex structure on \mathbb{C}^2 defined by pulling back the complex structure on \mathscr{C}^2 , that is

$$\widetilde{J}\left(\frac{\partial}{\partial x_1}\right) = \frac{\partial}{\partial x_2}, \qquad \widetilde{J}\left(\frac{\partial}{\partial x_2}\right) = -\frac{\partial}{\partial x_1}, \qquad \widetilde{J}\left(\frac{\partial}{\partial y_2}\right) = \frac{\partial}{\partial y_1}, \qquad \widetilde{J}\left(\frac{\partial}{\partial y_1}\right) = -\frac{\partial}{\partial y_2}.$$

Received 26 September 1994. Revision received 9 January 1995.