A CLASS OF SOLUTIONS FOR THE NEUMANN PROBLEM $-\Delta u + \lambda u = u^{(N+2)/(N-2)}$

MASSIMO GROSSI

Introduction. In this paper we study the problem

(0.1)
$$\begin{cases} -\Delta u + \lambda u = u^{(N+2)/(N-2)} & \text{in } \Omega \\ u > 0 & \text{in } \Omega \\ \partial u/\partial v = 0 & \text{on } \partial \Omega, \end{cases}$$

where $N \ge 3$, $\lambda > 0$, Ω is a bounded smooth domain of \mathbb{R}^N and v denotes the outer normal vector to $\partial \Omega$.

As it is well known, the main difficulty in studying (0.1) is that the corresponding variational problem lacks compactness, i.e., the functionals related to (0.1) do not satisfy the Palais-Smale condition. The first existence result for (0.1)in general domains and λ large has been obtained by Adimurthi and Mancini (see [AM1]) and X. J. Wang (see [W1]). More precisely, if we set

(0.2)
$$Q_{\lambda}(u) = \frac{\int_{\Omega} (|\nabla u|^2 + \lambda u^2)}{(\int_{\Omega} (|u|^{2N/(N-2)})^{(N-2)/N}}$$

and

(0.3)
$$S_{\lambda} = \inf\{Q_{\lambda}(u), u \in H^{1}(\Omega) \setminus \{0\}\},\$$

[AM] and [W1] prove the following.

THEOREM 0.1. There exists $\lambda_0 > 0$ such that for all $\lambda > \lambda_0$, problem (0.1) admits a solution u_{λ} which minimizes Q_{λ} (i.e., $Q_{\lambda}(u_{\lambda}) = S_{\lambda}$). Moreover this solution satisfies

$$(0.4) S_{\lambda} < \frac{S}{2^{2/N}} \quad ,$$

where S is the best constant for the Sobolev embedding $H^1_0(\Omega) \to L^{2N/(N-2)}(\Omega)$.

Received 10 August 1994.