MOUFANG TREES AND GENERALIZED HEXAGONS

RICHARD M. WEISS

1. Introduction. Let Γ be an undirected graph, let $V(\Gamma)$ denote the vertex set of Γ, and let G be a subgroup of aut (Γ). For $x \in V(\Gamma)$, we will denote by Γ_{x} the set of vertices adjacent to x in Γ. An n-path of Γ for any $n \geqslant 0$ is an $(n+1)$-tuple $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of vertices such that $x_{i} \in \Gamma_{x_{i-1}}$ for $1 \leqslant i \leqslant n$ and $x_{i} \neq x_{i-2}$ for $2 \leqslant$ $i \leqslant n$. For each $x \in V(\Gamma)$ and each $i \geqslant 1$, let $G_{x}^{[i]}$ denote the pointwise stabilizer in G_{x} of the set of vertices in Γ at distance at most i from x. We set

$$
G_{x, y, \ldots, z}^{[i]}=G_{x}^{[i]} \cap G_{y}^{[i]} \cap \cdots G_{z}^{[i]}
$$

for each subset $\{x, y, \ldots, z\}$ of $V(\Gamma)$ and each $i \geqslant 1$. The graph Γ will be called thick if $\left|\Gamma_{u}\right| \geqslant 3$ for every $u \in V(\Gamma)$. An apartment of Γ is a connected subgraph Δ such that $\left|\Delta_{u}\right|=2$ for every $u \in V(\Delta)$. When there is no danger of confusion, we will often use integers to denote vertices of Γ.

A generalized n-gon (for $n \geqslant 2$) is a bipartite graph of diameter n and girth $2 n$. A generalized n-gon Γ for $n \geqslant 3$ is called Moufang if $G_{1, \ldots, n-1}^{[1]}$ acts transitively on $\Gamma_{n} \backslash\{n-1\}$ for every $(n-1)$-path $(1, \ldots, n)$ of Γ for some $G \leqslant \operatorname{aut}(\Gamma)$. In [7], Tits showed that thick Moufang n-gons exist only for $n=3,4,6$, and 8 . If Γ is a generalized n-gon and $G \leqslant \operatorname{aut}(\Gamma)$, then $G_{0,1}^{[1]} \cap G_{0, \ldots, n}=1$ for every n-path $(0, \ldots$, n) of Γ. (This is a special case of $[5,(4.1 .1)]$; see Theorem 2 of [9].) Thus, the following (Theorem 1 of [9]) is a generalization of Tits's result.
1.1. Theorem. Let Γ be a thick connected graph, let $G \leqslant \operatorname{aut}(\Gamma)$, and let $n \geqslant 3$. Suppose that for each n-path $(0,1, \ldots, n)$ of Γ,
(i) $G_{1, \ldots, n-1}^{[1]}$ acts transitively on $\Gamma_{n} \backslash\{n-1\}$, and
(ii) $G_{0,1}^{[1]} \cap G_{0, \ldots, n}=1$.

Then $n=3,4$, 6 or 8 .
We will say that a graph Γ is (G, n)-Moufang if it is thick and connected, and Γ, G, and n fulfill conditions (i) and (ii) of 1.1. In this paper, we will be mainly concerned with the case that Γ is a tree.

In [1, (3.6)], the following beautiful connection between trees and generalized polygons was established.
1.2. Theorem. Let $n \geqslant 3$. Suppose Γ is a tree and \mathscr{A} a family of apartments of Γ such that

Received 30 June 1994. Revision received 19 January 1995.

