MOUFANG TREES AND GENERALIZED HEXAGONS

RICHARD M. WEISS

1. Introduction. Let Γ be an undirected graph, let $V(\Gamma)$ denote the vertex set of Γ , and let G be a subgroup of aut(Γ). For $x \in V(\Gamma)$, we will denote by Γ_x the set of vertices adjacent to x in Γ . An *n*-path of Γ for any $n \ge 0$ is an (n + 1)-tuple (x_0, x_1, \ldots, x_n) of vertices such that $x_i \in \Gamma_{x_{i-1}}$ for $1 \le i \le n$ and $x_i \ne x_{i-2}$ for $2 \le i \le n$. For each $x \in V(\Gamma)$ and each $i \ge 1$, let $G_x^{[i]}$ denote the pointwise stabilizer in G_x of the set of vertices in Γ at distance at most *i* from x. We set

$$G_{x,y,\ldots,z}^{[i]} = G_x^{[i]} \cap G_y^{[i]} \cap \cdots G_z^{[i]}$$

for each subset $\{x, y, ..., z\}$ of $V(\Gamma)$ and each $i \ge 1$. The graph Γ will be called thick if $|\Gamma_u| \ge 3$ for every $u \in V(\Gamma)$. An apartment of Γ is a connected subgraph Δ such that $|\Delta_u| = 2$ for every $u \in V(\Delta)$. When there is no danger of confusion, we will often use integers to denote vertices of Γ .

A generalized *n*-gon (for $n \ge 2$) is a bipartite graph of diameter *n* and girth 2*n*. A generalized *n*-gon Γ for $n \ge 3$ is called Moufang if $G_{1,\dots,n-1}^{[1]}$ acts transitively on $\Gamma_n \setminus \{n-1\}$ for every (n-1)-path $(1,\dots,n)$ of Γ for some $G \le \text{aut}(\Gamma)$. In [7], Tits showed that thick Moufang *n*-gons exist only for n = 3, 4, 6, and 8. If Γ is a generalized *n*-gon and $G \le \text{aut}(\Gamma)$, then $G_{0,1}^{[1]} \cap G_{0,\dots,n} = 1$ for every *n*-path $(0,\dots,n)$ of Γ . (This is a special case of [5, (4.1.1)]; see Theorem 2 of [9].) Thus, the following (Theorem 1 of [9]) is a generalization of Tits's result.

1.1. THEOREM. Let Γ be a thick connected graph, let $G \leq \operatorname{aut}(\Gamma)$, and let $n \geq 3$. Suppose that for each n-path $(0, 1, \ldots, n)$ of Γ ,

(i) $G_{1,\ldots,n-1}^{[1]}$ acts transitively on $\Gamma_n \setminus \{n-1\}$, and (ii) $G_{0,1}^{[1]} \cap G_{0,\ldots,n} = 1$.

(ii) $G_{0,1} \cap G_{0,...,n} =$ Then n = 3, 4, 6 or 8.

We will say that a graph Γ is (G, n)-Moufang if it is thick and connected, and Γ , G, and n fulfill conditions (i) and (ii) of 1.1. In this paper, we will be mainly concerned with the case that Γ is a tree.

In [1, (3.6)], the following beautiful connection between trees and generalized polygons was established.

1.2. THEOREM. Let $n \ge 3$. Suppose Γ is a tree and \mathscr{A} a family of apartments of Γ such that

Received 30 June 1994. Revision received 19 January 1995.