CLASS GROUP L-FUNCTIONS

W. DUKE, J. FRIEDLANDER, AND H. IWANIEC

To Professor Wolfgang Schmidt on the occasion of his sixtieth birthday.

1. Introduction. We consider the imaginary quadratic field $K = \mathbb{Q}(\sqrt{-D})$ of discriminant -D. Our main interest here is to study the L-functions of K which are attached to the characters of the class group \mathscr{H} . Letting $\chi \in \widehat{\mathscr{H}}$ be such a character, we denote

$$L_{K}(s, \chi) = \sum_{\mathfrak{a}} \chi(\mathfrak{a}) (N\mathfrak{a})^{-s}, \qquad (1.1)$$

where a ranges over nonzero integral ideals, and Na is the norm. Thus we have $h = h(-D) = |\mathcal{H}|$ such L-functions. It is known that the "class number" h satisfies

$$D^{1/2-\varepsilon} \ll h \ll D^{1/2} \log D. \tag{1.2}$$

Here the lower bound (ineffective) is due to C. L. Siegel [Si], and the upper bound is elementary.

For the trivial character $\chi = 1$, the L-function is just the Dedekind zetafunction of K and can be expressed as $\zeta_K(s) = \zeta(s)L(s, \chi_D)$, where $\zeta(s)$ is the Riemann zeta-function and $L(s, \chi_D)$ is the Dirichlet L-function for the field character $\chi_{\rm D}(n) = (-D/n)$. More generally, if χ is real we have Kronecker's factorization

$$L_{K}(s, \chi) = L(s, \chi_{D_{1}})L(s, \chi_{D_{2}}), \qquad (1.3)$$

where $-D = D_1 D_2$ is some factorization into fundamental discriminants $-D_1$ and $-D_2$, see [Si2, pp. 81 and 91]. Of course the number $2^{\omega(D)-1}$ of such real characters is quite small in comparison to h when D is large.

The L-functions defined in (1.1) for Re s > 1, where the series converges absolutely, possess an analytic continuation to the whole complex s-plane. They are entire functions except for $\zeta_{\kappa}(s)$, which has a simple pole at s = 1 of residue

$$\operatorname{res}_{s=1} \zeta_{K}(s) = L(1, \chi_{D}) = 2\pi h w^{-1} D^{-1/2}, \qquad (1.4)$$

Received 17 June 1994.

Duke and Iwaniec supported by NSF grant DMS-9202022.

Friedlander and Iwaniec supported by NSERC grant A5123.