CLASS GROUP L-FUNCTIONS

W. DUKE, J. FRIEDLANDER, and H. IWANIEC

To Professor Wolfgang Schmidt on the occasion of his sixtieth birthday.

1. Introduction. We consider the imaginary quadratic field $K=\mathbb{Q}(\sqrt{-D})$ of discriminant $-D$. Our main interest here is to study the L-functions of K which are attached to the characters of the class group \mathscr{H}. Letting $\chi \in \widehat{\mathscr{H}}$ be such a character, we denote

$$
\begin{equation*}
L_{K}(s, \chi)=\sum_{\mathfrak{a}} \chi(\mathfrak{a})(N \mathfrak{a})^{-s} \tag{1.1}
\end{equation*}
$$

where a ranges over nonzero integral ideals, and $N a$ is the norm. Thus we have $h=h(-D)=|\mathscr{H}|$ such L-functions. It is known that the "class number" h satisfies

$$
\begin{equation*}
D^{1 / 2-\varepsilon} \ll h \ll D^{1 / 2} \log D . \tag{1.2}
\end{equation*}
$$

Here the lower bound (ineffective) is due to C. L. Siegel [Si], and the upper bound is elementary.

For the trivial character $\chi=1$, the L-function is just the Dedekind zetafunction of K and can be expressed as $\zeta_{K}(s)=\zeta(s) L\left(s, \chi_{\mathrm{D}}\right)$, where $\zeta(s)$ is the Riemann zeta-function and $L\left(s, \chi_{\mathrm{D}}\right)$ is the Dirichlet L-function for the field character $\chi_{\mathrm{D}}(n)=(-D / n)$. More generally, if χ is real we have Kronecker's factorization

$$
\begin{equation*}
L_{K}(s, \chi)=L\left(s, \chi_{D_{1}}\right) L\left(s, \chi_{D_{2}}\right), \tag{1.3}
\end{equation*}
$$

where $-D=D_{1} D_{2}$ is some factorization into fundamental discriminants $-D_{1}$ and $-D_{2}$, see [$\mathrm{Si} 2, \mathrm{pp} .81$ and 91]. Of course the number $2^{\omega(D)-1}$ of such real characters is quite small in comparison to h when D is large.

The L-functions defined in (1.1) for $\operatorname{Re} s>1$, where the series converges absolutely, possess an analytic continuation to the whole complex s-plane. They are entire functions except for $\zeta_{K}(s)$, which has a simple pole at $s=1$ of residue

$$
\begin{equation*}
\operatorname{res}_{s=1}^{\operatorname{res}} \zeta_{K}(s)=L\left(1, \chi_{\mathrm{D}}\right)=2 \pi h w^{-1} D^{-1 / 2} \tag{1.4}
\end{equation*}
$$

Received 17 June 1994.
Duke and Iwaniec supported by NSF grant DMS-9202022.
Friedlander and Iwaniec supported by NSERC grant A5123.

