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1. Introduction and main statements. The semiclassical trace formula of [12],
[31, [19], [20] is a rigorous version of the Gutzwiller trace formula which pro-
vides information about the spectral function of Schrédinger operators in the
semiclassical regime. To be more specific, consider an operator of Schrodinger
type on a compact manifold M, that is, an operator of the form

N
1) A=Y W4,
i=o

where, for each j, 4; is a differential operator on M of order j. Define the Hamil-
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