AN EXTENSION OF HÖRMANDER'S THEOREM FOR INFINITELY DEGENERATE SECOND-ORDER OPERATORS

DENIS R. BELL AND SALAH-ELDIN A. MOHAMMED

1. Introduction. Let X_0, \ldots, X_n denote a collection of smooth vector fields defined on an open subset D of \mathbb{R}^d , and $c: D \to \mathbb{R}$ a smooth function. Consider the second-order differential operator

$$L := \frac{1}{2} \sum_{i=1}^{n} X_i^2 + X_0 + c.$$
 (1.1)

Let $\text{Lie}(X_0, \ldots, X_n)$ be the Lie algebra generated by the vector fields X_0, \ldots, X_n . According to the theorem of Hörmander [H, Theorem 1.1], L is hypoelliptic on D if the vector space $\text{Lie}(X_0, \ldots, X_n)(x)$ has dimension d at every $x \in D$. Hörmander's condition characterizes hypoellipticity for operators of the form (1.1) with analytic coefficients. However, this is not the case if the vector fields X_0, \ldots, X_n defining L are allowed to be smooth nonanalytic. A striking illustration of the nonnecessity of the Hörmander condition in the smooth *nonanalytic* case is provided by a result of Kusuoka and Stroock, who have made a complete study of hypoellipticity for the class of differential operators on \mathbb{R}^3 of the form

$$L_{\sigma} := \frac{\partial^2}{\partial x_1^2} + \sigma^2(x_1) \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2}.$$
 (1.2)

Here σ is assumed to be a C^{∞} real-valued even function, nondecreasing on $[0, \infty)$, which vanishes (only) at zero. It is shown in [KS, Theorem 8.41] that L_{σ} is hypoelliptic on \mathbb{R}^3 if and only if σ satisfies the condition $\lim_{s\to 0^+} s \log \sigma(s) = 0$. In particular, the operator L_{σ} corresponding to $\sigma(s) = \exp(-|s|^p)$ is hypoelliptic if plies in the range (-1, 0); however, any such operator fails to satisfy Hörmander's condition on the hyperplane $x_1 = 0$.

Let L be the operator defined in (1.1). The purpose of this paper is to establish a criterion for hypoellipticity sharper than that of Hörmander, in the case where L has smooth nonanalytic coefficients. Our main theorem (Theorem 1.0) asserts the hypoellipticity of the operator L on D under hypotheses that allow Hörmander's general condition to *fail at an exponential rate* on a collection of surfaces in D.

Received 2 November 1994. Revision received 9 December 1994.

Bell supported in part by NSF grant DMS-9121406.

Mohammed supported in part by NSF grants DMS-8907857 and DMS-9206785.