AN EXTENSION OF HÖRMANDER'S THEOREM FOR INFINITELY DEGENERATE SECOND-ORDER OPERATORS

DENIS R. BELL and SALAH-ELDIN A. MOHAMMED

1. Introduction. Let X_{0}, \ldots, X_{n} denote a collection of smooth vector fields defined on an open subset D of \mathbf{R}^{d}, and $c: D \rightarrow \mathbf{R}$ a smooth function. Consider the second-order differential operator

$$
\begin{equation*}
L:=\frac{1}{2} \sum_{i=1}^{n} X_{i}^{2}+X_{0}+c . \tag{1.1}
\end{equation*}
$$

Let $\operatorname{Lie}\left(X_{0}, \ldots, X_{n}\right)$ be the Lie algebra generated by the vector fields X_{0}, \ldots, X_{n}. According to the theorem of Hörmander [H, Theorem 1.1], L is hypoelliptic on D if the vector space $\operatorname{Lie}\left(X_{0}, \ldots, X_{n}\right)(x)$ has dimension d at every $x \in D$. Hörmander's condition characterizes hypoellipticity for operators of the form (1.1) with analytic coefficients. However, this is not the case if the vector fields X_{0}, \ldots, X_{n} defining L are allowed to be smooth nonanalytic. A striking illustration of the nonnecessity of the Hörmander condition in the smooth nonanalytic case is provided by a result of Kusuoka and Stroock, who have made a complete study of hypoellipticity for the class of differential operators on $\mathbf{R}^{\mathbf{3}}$ of the form

$$
\begin{equation*}
L_{\sigma}:=\frac{\partial^{2}}{\partial x_{1}^{2}}+\sigma^{2}\left(x_{1}\right) \frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}} . \tag{1.2}
\end{equation*}
$$

Here σ is assumed to be a C^{∞} real-valued even function, nondecreasing on $[0, \infty)$, which vanishes (only) at zero. It is shown in [KS, Theorem 8.41] that L_{σ} is hypoelliptic on \mathbf{R}^{3} if and only if σ satisfies the condition $\lim _{s \rightarrow 0+} s \log \sigma(s)=0$. In particular, the operator L_{σ} corresponding to $\sigma(s)=\exp \left(-|s|^{p}\right)$ is hypoelliptic if p lies in the range ($-1,0$); however, any such operator fails to satisfy Hörmander's condition on the hyperplane $x_{1}=0$.

Let L be the operator defined in (1.1). The purpose of this paper is to establish a criterion for hypoellipticity sharper than that of Hörmander, in the case where L has smooth nonanalytic coefficients. Our main theorem (Theorem 1.0) asserts the hypoellipticity of the operator L on D under hypotheses that allow Hörmander's general condition to fail at an exponential rate on a collection of surfaces in D.

[^0]
[^0]: Received 2 November 1994. Revision received 9 December 1994.
 Bell supported in part by NSF grant DMS-9121406.
 Mohammed supported in part by NSF grants DMS-8907857 and DMS-9206785.

