BOUNDING HOMOTOPY AND HOMOLOGY GROUPS BY CURVATURE AND DIAMETER

XIAOCHUN RONG

0. Introduction. In this paper, we are concerned with the set of compact Riemannian *n*-manifolds with uniform bounds on the absolute value of sectional curvature and diameter. Since we can scale the metric, we will always assume that $|K| \leq 1.$

Given a positive integer $n \ge 2$ and a real number D > 0, let \mathcal{M}_D^n denote the set of the isometry classes of the Riemannian n-manifolds which satisfy

$$|K| \leq 1$$
, diam $\leq D$.

The main results of this paper (Theorems 0.1-0.6) show that many interesting topological invariants of the homotopy groups and homology groups of $M \in \mathcal{M}_D^n$ can be bounded in terms of n and D (with the normalized bound on sectional curvature, $|K| \leq 1$).

Let $N(\cdot, \cdot)$ denote a constant whose value depends on parameters in the parenthesis.

THEOREM 0.1. Given $n \ge 2$ and D > 0, let $M \in \mathcal{M}_D^n$. For each $q \ge 1$, the minimal number of generators for $\pi_a(M)$ is bounded by $N_1(n, D, q) < \infty$, provided $\pi_a(M)$ is finitely generated.

Since $|\pi_1(M)| < \infty$ implies that for each $q \ge 1$, $\pi_q(M)$ is finitely generated (see [Sp]), we immediately get the following.

COROLLARY 0.2. Given $n \ge 2$ and D > 0, let $M \in \mathcal{M}_D^n$. Assume that $|\pi_1(M)| < \infty$ ∞ . Then, for each $q \ge 1$, the minimal number of generators for $\pi_a(M)$ is bounded by $N_1(n, D, q)$.

Theorem 0.3 was suggested to the author by K. Grove.

THEOREM 0.3. Given $n \ge 2$ and D > 0, let $M \in \mathcal{M}_D^n$. For each $q \ge 2$, there are at most $N_2(n, D, q)$ isomorphism classes for the qth rational homotopy group $\pi_q(M)\otimes \mathbb{Q}.$

COROLLARY 0.4. Given $n \ge 2$ and D > 0, let $M \in \mathcal{M}_D^n$. For each $q \ge 2$, if $\operatorname{rank}(\pi_q(M)) < \infty$, then $\operatorname{rank}(\pi_q(M)) \leq N_2(n, D, q)$.

Received 19 September 1994.

Author supported by Mathematical Sciences Research Institute through National Science Foundation grant DMS 9022140, and partially supported by National Science Foundation grant DMS 9204095.