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GROUP COHOMOLOGY CONSTRUCTION OF THE
COHOMOLOGY OF MODULI SPACES OF FLAT

CONNECTIONS ON 2-MANIFOLDS

LISA C. JEFFREY

1. Introduction. Let K be a compact connected semisimple Lie group, and let
fl be an element in the center Z(K). If E is a closed 2-manifold of genus # > 2 with
fundamental group 1I, and o E- D2, then rl(Eo)= IF where IF is the free
group on 2# generators. There is an associated moduli space of representations
11 Y/K where Y {p Hom(lF, K): p(R) r} and K acts on Hom(iF, K) by
conjugation. Here R is the element of IF corresponding to a loop winding once
around the boundary cE0. Because is in the center,Z(K), each point in the
space ’a gives rise to a representation of the fundamental group 1-I of the closed
surface E into the group K K/Z(K).
The space ’a has two alternative descriptions. Via the holonomy map, ’a

may be identified with the space of gauge equivalence classes of fiat connections
on a principal K bundle over Zo, for which the holonomy around the boundary
C3Eo is the element ft. We obtain a second alternative description once we fix a
complex structure on Z: then a becomes identified with a space of semistable
holomorphic vector bundles (of prescribed rank and degree) over Z.

Atiyah and Bott worked in this holomorphic setting and described the genera-
tors of the cohomology ring of ’a in terms of a holomorphic vector bundle ILl
over ’ x Y (the universal bundle), whose restriction to a point m ’ is the
holomorphic vector bundle over E corresponding to m. The Kiinneth decomposi-
tion of the Chern classes of ILl yields classes in H*(’a), which are the generators
of the cohomology ring. The purpose of the present paper is to give an explicit
description of these generators in a representation-theoretic setting, using group
cohomology.
Our starting point is the paper I-W] of Weinstein: the construction we present

below generalizes Weinstein’s construction of the symplectic form on moduli
space, whose cohomology class is one of the generators described above. Goldman
I-G] constructed the symplectic form using group cohomology, but his proof
that this form was closed used its gauge-theory description. Karshon IK] gave
the first group cohomology proof that the symplectic form was closed. In [W-l,
Weinstein interpreted Karshon’s construction in terms of the realization of H*(BK)
via the de Rham cohomology of simplicial manifolds, which is due to Bott and
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