ON THE PRIME IDEAL THEOREM AND IRREGULARITIES IN THE DISTRIBUTION OF PRIMES

M. NAIR and A. PERELLI

1. Introduction. For any fixed $k \in \mathbb{N}$, let $f(x)$ denote the polynomial $x^{k}+Q d$ where $Q, d \in \mathbb{N}$. Write, for fixed Q and prime p,

$$
\varrho(d, p)=\left|\left\{m(\bmod p): m^{k}+Q d \equiv 0(\bmod p)\right\}\right| .
$$

Since the zeros of $f(x)$ are distinct, we can factorize f over \mathbb{Q} as

$$
f(x)=\prod_{i=1}^{v(d)} f_{i}(x)
$$

where each $f_{i}(x)$ is irreducible and has integral coefficients.
For fixed k, d and Q, the prime ideal theorem implies that

$$
\sum_{p \leqslant x} \varrho(d, p)=v(d) \ell i(x)+O\left(\frac{x}{\log ^{A} x}\right), \quad x \rightarrow \infty
$$

where A is an arbitrary positive constant and the implied constant depends on k, A, d and Q. The dependence on d and Q, in particular, tends to be of a quality that rules out the possibility of averaging over d in an interval and yet obtaining the expected error term with good uniformity in Q.

In this paper, we prove by a combination of various methods the following result.

Theorem 1. Let $k \in \mathbb{N}, X, Y \geqslant 2, \varepsilon, A>0$ and $Y^{(1 / 2)+\varepsilon} \leqslant H \leqslant Y$. Then

$$
\sum_{Y \leqslant d \leqslant Y+H}\left|\sum_{p=X}^{2 X}(\varrho(d, p)-v(d))\right|<_{A, k, \varepsilon} \frac{X H}{\log ^{A} X}
$$

uniformly for $Q \leqslant Y^{A}$.
The implicit constant in the upper bound is ineffective owing to the application of the Siegel-Brauer theorem in the proof. It is worthwhile to point out that the absence of any restriction in the ranges for X and Y is primarly due to the possibility of interpreting both p and d as a modulus in an appropriate sense.

