GEODESICS OF HOFER'S METRIC ON THE GROUP OF HAMILTONIAN DIFFEOMORPHISMS

MISHA BIALY and LEONID POLTEROVICH

§1. Introduction and main results. In the present paper, we study geometry of the group \mathscr{D} of compactly supported Hamiltonian diffeomorphisms of $\mathbb{R}^{2 n}$ endowed with Hofer's metric (see [H1], [H2], [H-Z]). Our basic observation is that each point of this group has a flat C^{1}-neighborhood (see 1.2). This allows us to give a complete description of geodesics on \mathscr{D} (see 1.3).

Our approach is based on variational methods developed in [H1], [H2], [HZ].
We also present an application of these results to classical mechanics. Namely, we discuss interrelations between invariant tori of optical Hamiltonian flows on $T^{*} \mathbb{T}^{n}$ and their metrical properties (see 1.4).
1.1. Preliminaries. Consider the standard linear symplectic space $\left(\mathbb{R}^{2 n}, \omega\right)$. A smooth path of symplectomorphisms of $\mathbb{R}^{2 n}$ is an isotopy generated by a smooth compactly supported Hamiltonian function. Let \mathscr{D} be the (infinite-dimensional) Lie group of all symplectomorphisms of $\mathbb{R}^{2 n}$ which can be joined with the identity map by a smooth path. We identify the Lie algebra \mathfrak{D} of \mathscr{D} with $C_{0}^{\infty}\left(\mathbb{R}^{2 n}\right)$.

Let $\|\|$ be a norm on $\mathbb{D}\|, H \|=\max H-\min H$. Since this norm is invariant under adjoint action of \mathscr{D}, it defines a bi-invariant Finsler metric on \mathscr{D}, and hence, in the standard way, a length structure and a (pseudo)-distance. Namely, given a smooth path

$$
\ell:[a, b] \rightarrow \mathscr{D}
$$

we set length $(\ell)=\int_{a}^{b}\|\dot{l}(t)\| d t$, and for two elements $\varphi, \psi \in \mathscr{D}$ we define

$$
d(\varphi, \psi)=\inf \text { length }(\ell)
$$

where the infimum is taken over all smooth paths ℓ on \mathscr{D} joining φ and ψ. A nontrivial result by H. Hofer [H1] states that d is a genuine distance function on \mathscr{D}.
1.2. C^{1}-Flatness. By definition, Hofer's distance on \mathscr{D} is introduced via length of smooth paths. These paths are continuous in C^{1}-Whitney topology which is finer than one induced by the distance. Therefore, it is important to understand geometry of C^{1}-Whitney open sets on \mathscr{D}. For this purpose, we use a classical tool

