NEGATIVE RICCI CURVATURE AND ISOMETRY GROUP

XIANZHE DAI, ZHONGMIN SHEN, AND GUOFANG WEI

1. Introduction. It is now known that negative Ricci curvature does not imply any topological restriction on the underlying manifold (cf. [L]). It does, however, impose geometric restriction by the classical result of Bochner [Bo], namely, the isometry group must be finite. In this paper we consider a quantitative version of Bochner's theorem.

Consider the class of Riemannian *n*-manifolds satisfying

$$-\Lambda \leqslant \operatorname{Ric} \leqslant -\lambda < 0, \quad \operatorname{inj} \geqslant i_0, \quad \operatorname{vol} \leqslant V.$$
(1)

(Here the upper bound on the volume is equivalent to an upper bound on the diameter.) By a result of M. Anderson [A] this class is precompact in $C^{1,\alpha}$ topology. We prove the following theorem.

THEOREM 1.1. Let M_i be a sequence of n-manifolds satisfying (1) and $C^{1,\alpha}$ convergent to a $C^{1,\alpha}$ Riemannian manifold M. Then

(a) $\#\{Iso(M)\} < +\infty$.

(b) $\overline{\lim}_{i\to\infty} \# \{ \operatorname{Iso}(M_i) \} \leq \# \{ \operatorname{Iso}(M) \}.$

An immediate consequence of Theorem 1.1 is the following result, which was obtained by Katsuda [K], with an additional assumption that the sectional curvature is bounded from below.

COROLLARY 1.2. There is a constant $N = N(n, \lambda, \Lambda, i_0, V)$ such that for any n-dimensional Riemannian manifold M satisfying (1), the order of the isometry group Iso(M) is smaller than N.

Remark 1. This result can also be considered as a generalization of the Hurwicz Theorem for hyperbolic surfaces, which gives a (very explicit) bound on the order of the isomerty group in terms of the genus.

Remark 2. If one assumes the sectional curvature bound:

$$-\Lambda \leqslant K < 0,$$

then one can drop the injectivity radius lower bound; see [Ym]. Here one can use

Received 14 January 1994.

Dai partially supported by NSF Grant DMS 9204267 and an Alfred P. Sloan Fellowship. Shen partially supported by NSF Grant DMS 9304731.