CORRECTION TO "METRIC PINCHING OF LOCALLY SYMMETRIC SPACES"

CONRAD PLAUT

The proof of Proposition 11 in [1] is incorrect because we do not know whether γ_5 and γ_6 are geodesic directions. We need to change "finite topological dimension" to "finite Hausdorff dimension" (i.e., assume that X is an Alexandrov space) in the statement of Theorem 4, and proceed as follows. (The statements of the pinching theorems are unchanged.) In the following, "nonsingular point" refers to a point whose tangent space is Euclidean.

LEMMA 1. Let p be a nonsingular point in an Alexandrov space X. Then there exists an $\varepsilon > 0$ such that for any nonsingular points x, $y \in B(p, \varepsilon)$ and minimal curves γ_1 , γ_2 joining x and y, if z_1 , z_2 are the midpoints of γ_1 , γ_2 , respectively, $d(z_1, z_2) < d(x, y)/2$.

Proof. For simplicity, take the lower curvature bound k for X to be negative. Choose an angle A > 0 small enough so that, if Γ_1 , Γ_2 are unit geodesics in S_k such that $\alpha(\Gamma_1, \Gamma_2) < A$, then for any $0 < t \leq 1$, $d(\Gamma_1(t/2), \Gamma_2(t/2)) < t/2$. The existence of such an A follows easily from the distance-angle monotonicity. We have now reduced the problem to: for any nonsingular points x, y close to p and minimal curves γ_1, γ_2 joining x and y, $\alpha(\gamma_1, \gamma_2) < A$. Choose a finite A/6-dense set $\{\beta_1, \ldots, \beta_m\}$ of geodesic directions in $\overline{S}_p = S^{n-1}$ which are the unique minimal curves between their endpoints. Now choose T > 0 small enough that for any i, j, $\alpha(\beta_i, \beta_j) - \alpha_k(p; \beta_i(T), \beta_j(T)) < A/6$. Then for any nonsingular point x close enough to p and minimal curves β_i^x from x to $\beta_i(T)$, we also have that $\{\beta_i^x\}$ is A/6-dense in $\overline{S}_x = S^{n-1}$ and has the property that $\alpha(\beta_i^x, \beta_j^x) - \alpha_k(x; \beta_i(T), \beta_j(T)) < A/6$. Let γ_1, γ_2 be minimal curves starting at x and choose $\beta_{i_1}^x$ and $\beta_{i_2}^x$ such that $\alpha(\gamma_1, \beta_{i_1}^x) < A/6$ and $\alpha(\gamma_2, \beta_{i_2}^x) < A/6$. Then, for any t < T,

$$\begin{aligned} \alpha_{k}(x;\gamma_{1}(t),\gamma_{2}(t)) &\ge \alpha_{k}(x;\beta_{i_{1}}^{x}(t),\beta_{i_{2}}^{x}(t)) - \alpha_{k}(x;\beta_{i_{1}}^{x}(t),\gamma_{1}(t)) - \alpha_{k}(x;\beta_{i_{2}}^{x}(t),\gamma_{2}(t)) \\ &\ge \alpha_{k}(x;\beta_{i_{1}}^{x}(T),\beta_{i_{2}}^{x}(T)) - A/6 - A/6 > \alpha(\beta_{i_{1}}^{x},\beta_{i_{2}}^{x}) - A/2 \\ &\ge \alpha(\gamma_{1},\gamma_{2}) - 5A/6. \end{aligned}$$

In other words, if $\alpha(\gamma_1, \gamma_2) > A$, then $\alpha_k(x; \gamma_1(t), \gamma_2(t)) > 0$ and so $\gamma_1(t) \neq \gamma_2(t)$.

Received 31 January 1994.