CORRECTION TO "METRIC PINCHING OF LOCALLY SYMMETRIC SPACES"

CONRAD PLAUT

The proof of Proposition 11 in [1] is incorrect because we do not know whether γ_{5} and γ_{6} are geodesic directions. We need to change "finite topological dimension" to "finite Hausdorff dimension" (i.e., assume that X is an Alexandrov space) in the statement of Theorem 4, and proceed as follows. (The statements of the pinching theorems are unchanged.) In the following, "nonsingular point" refers to a point whose tangent space is Euclidean.

Lemma 1. Let p be a nonsingular point in an Alexandrov space X. Then there exists an $\varepsilon>0$ such that for any nonsingular points $x, y \in B(p, \varepsilon)$ and minimal curves γ_{1}, γ_{2} joining x and y, if z_{1}, z_{2} are the midpoints of γ_{1}, γ_{2}, respectively, $d\left(z_{1}, z_{2}\right)<d(x, y) / 2$.

Proof. For simplicity, take the lower curvature bound k for X to be negative. Choose an angle $A>0$ small enough so that, if Γ_{1}, Γ_{2} are unit geodesics in S_{k} such that $\alpha\left(\Gamma_{1}, \Gamma_{2}\right)<A$, then for any $0<t \leqslant 1, d\left(\Gamma_{1}(t / 2), \Gamma_{2}(t / 2)\right)<t / 2$. The existence of such an A follows easily from the distance-angle monotonicity. We have now reduced the problem to: for any nonsingular points x, y close to p and minimal curves γ_{1}, γ_{2} joining x and $y, \alpha\left(\gamma_{1}, \gamma_{2}\right)<A$. Choose a finite $A / 6$-dense set $\left\{\beta_{1}, \ldots, \beta_{m}\right\}$ of geodesic directions in $\bar{S}_{p}=S^{n-1}$ which are the unique minimal curves between their endpoints. Now choose $T>0$ small enough that for any i, j, $\alpha\left(\beta_{i}, \beta_{j}\right)-\alpha_{k}\left(p ; \beta_{i}(T), \beta_{j}(T)\right)<A / 6$. Then for any nonsingular point x close enough to p and minimal curves β_{i}^{x} from x to $\beta_{i}(T)$, we also have that $\left\{\beta_{i}^{x}\right\}$ is $A / 6$-dense in $\bar{S}_{x}=S^{n-1}$ and has the property that $\alpha\left(\beta_{i}^{x}, \beta_{j}^{x}\right)-\alpha_{k}\left(x ; \beta_{i}(T), \beta_{j}(T)\right)<A / 6$. Let γ_{1}, γ_{2} be minimal curves starting at x and choose $\beta_{i_{1}}^{x}$ and $\beta_{i_{2}}^{x}$ such that $\alpha\left(\gamma_{1}, \beta_{i_{1}}^{x}\right)<$ $A / 6$ and $\alpha\left(\gamma_{2}, \beta_{i_{2}}^{x}\right)<A / 6$. Then, for any $t<T$,

$$
\begin{aligned}
\alpha_{k}\left(x ; \gamma_{1}(t), \gamma_{2}(t)\right) & \geqslant \alpha_{k}\left(x ; \beta_{i_{1}}^{x}(t), \beta_{i_{2}}^{x}(t)\right)-\alpha_{k}\left(x ; \beta_{i_{1}}^{x}(t), \gamma_{1}(t)\right)-\alpha_{k}\left(x ; \beta_{i_{2}}^{x}(t), \gamma_{2}(t)\right) \\
& \geqslant \alpha_{k}\left(x ; \beta_{i_{1}}^{x}(T), \beta_{i_{2}}^{x}(T)\right)-A / 6-A / 6>\alpha\left(\beta_{i_{1}}^{x}, \beta_{i_{2}}^{x}\right)-A / 2 \\
& \geqslant \alpha\left(\gamma_{1}, \gamma_{2}\right)-5 A / 6 .
\end{aligned}
$$

In other words, if $\alpha\left(\gamma_{1}, \gamma_{2}\right)>A$, then $\alpha_{k}\left(x ; \gamma_{1}(t), \gamma_{2}(t)\right)>0$ and so $\gamma_{1}(t) \neq \gamma_{2}(t)$.

Received 31 January 1994.

