ON THE HODGE STRUCTURE OF PROJECTIVE HYPERSURFACES IN TORIC VARIETIES

VICTOR V. BATYREV AND DAVID A. COX

The purpose of this paper is to explain one extension of the ideas of the Griffiths-Dolgachev-Steenbrink method for describing the Hodge theory of smooth (resp. quasi-smooth) hypersurfaces in complex projective spaces (resp. in weighted projective spaces). The main idea of this method is the representation of the Hodge components $H^{d-1-p,p}(X)$ in the middle cohomology group of projective hypersurfaces

$$X = \{ z \in \mathbf{P}^d \colon f(z) = 0 \}$$

in $\mathbf{P}^d = \operatorname{Proj} \mathbf{C}[z_1, \dots, z_{d+1}]$ using homogeneous components of the quotient of the polynomial ring $\mathbf{C}[z_1, \ldots, z_{d+1}]$ by the ideal $J(f) = \langle \partial f / \partial z_1, \ldots, \partial f / \partial z_{d+1} \rangle$. Basic references are [14], [15], [25], [30].

In this paper, we consider hypersurfaces X in compact d-dimensional toric varieties P_{Σ} associated with complex rational polyhedral fan Σ of simplicial cones \mathbf{R}^{d} . According to the theory of toric varieties [13], [23], [10], [24], \mathbf{P}_{Σ} is defined by the gluing together of affine toric varieties $A_{\sigma} = \text{Spec } \mathbf{C}[\check{\sigma} \cap \mathbf{Z}^d] \ (\sigma \in \Sigma)$ where $\check{\sigma}$ denotes the dual to σ cone. Weighted projective spaces are examples of toric varieties.

M. Audin [2] first noticed that there exists another approach to the definition of the toric variety P_{Σ} . This definition bases on the representation of P_{Σ} as a quotient of some Zariski open subset $U(\Sigma)$ in an affine space Aⁿ by a linear diagonal action of some algebraic subgroup $D(\Sigma) \subset (C^*)^n$. The group of characters of $D(\Sigma)$ is isomorphic to the group of classes $Cl(\Sigma)$ of divisors on P_{Σ} modulo the rational equivalence. The dimension n of the open set $U(\Sigma)$ equals the number of 1-dimensional cones in the fan Σ , and the dimension of $\mathbf{D}(\Sigma)$ equals n - d, the rank of the Picard group of \mathbf{P}_{Σ} . In particular, if \mathbf{P}_{Σ} is smooth, then $U(\Sigma)$ is the universal torsor over P_{Σ} (see [22]) and $D(\Sigma)$ is the torus of Neron-Severi.

The codimension of the complement

$$Z(\Sigma) = \mathbf{A}^n \setminus U(\Sigma)$$

is at least 2. So the ring of regular algebraic functions on $U(\Sigma)$ is isomorphic to

Received 25 June 1993. Revision received 17 March 1994. Batyrev supported by DFG, Forschungsschwerpunkt Komplexe Mannigfaltigkeiten. Cox's research supported by NSF grant DMS-9301161.