INEQUALITY OF BOGOMOLOV-GIESEKER TYPE ON ARITHMETIC SURFACES

ATSUSHI MORIWAKI

Introduction

- 1. Quick review of arithmetic intersection theory
- 2. Asymptotic behavior of analytic torsions
- 3. Hermitian modules over arithmetic curves
- 4. Asymptotic behavior of L^2 -degree of submodules of $H^0(L^m)$
- 5. Vanishing of a certain Bott-Chern secondary class
- 6. Donaldson's Lagrangian and arithmetic second Chern class
- 7. Second fundamental form
- 8. Proof of the main theorem
- 9. Arithmetic second Chern character of semistable vector bundles
- 10. Torsion vector bundles

References

Introduction. Let M be an n-dimensional compact Kähler manifold with a Kähler form Φ . For a nonzero torsion free sheaf F on M, we define an average degree $\mu(F, \Phi)$ of F with respect to Φ by

$$\mu(F, \Phi) = \frac{\int_M c_1(F) \wedge \Phi^{n-1}}{\operatorname{rk} F}.$$

Let E be a nonzero torsion-free sheaf on M. E is said to be Φ -stable (resp. Φ -semistable) if, for every subsheaf F of E with $0 \subsetneq F \subsetneq E$, an inequality $\mu(F, \Phi) < \mu(E, \Phi)$ (resp. $\mu(F, \Phi) \leqslant \mu(E, \Phi)$) is satisfied. If a torsion-free sheaf E of rank r is Φ -semistable, then we have

$$\int_{M} \left(c_2(E) - \frac{r-1}{2r} c_1(E)^2 \right) \wedge \Phi^{n-2} \geqslant 0,$$

which is called the Bogomolov-Gieseker inequality (cf. [Bo] and [Gi]). The purpose of this paper is to establish an arithmetic analogue of the above inequality on an arithmetic surface.

MAIN THEOREM. Let K be an algebraic number field, O_K the ring of integers of K, and $f\colon X\to \operatorname{Spec}(O_K)$ an arithmetic surface. Let (E,h) be a Hermitian vector bundle on X. If $E_{\overline{\mathbb{Q}}}$ is semistable on the geometric generic fiber $X_{\overline{\mathbb{Q}}}$ of f, then we have an

Received 2 June 1993.