A NONVANISHING RESULT FOR TWISTS OF L-FUNCTIONS OF GL(n)

LAURE BARTHEL and DINAKAR RAMAKRISHNAN

In this article we prove the following.
Theorem. Let F be a number field, n an integer $\geqslant 3$, and $T=[1 / n, 1-(1 / n)] \subset$ R. Let π be a unitary cuspidal automorphic representation of $\mathrm{GL}_{n}\left(\mathbf{A}_{F}\right), S$ a finite set of places of F, and s_{0} a complex number such that $\mathfrak{R} s_{0} \notin T$. Then there exist infinitely many primitive ray class characters χ of F such that χ is unramified at the places of S and

$$
L\left(\pi \otimes \chi, s_{0}\right) \neq 0 .
$$

Moreover, suppose π is tempered, i.e., it satisfies the generalized Ramanujan conjecture. Then the same result holds with T replaced by $T_{1}=[2 /(n+1), 1-(2 /(n+1))]$.

Such a result was established by David Rohrlich in [14] for GL(1) and GL(2) at every point s_{0} in \mathbf{C}, i.e., with the exceptional set T being empty. It may be worthwhile to note that our result here gives a nonvanishing statement for twists of the L-functions of cuspidal tempered automorphic representations of $\mathrm{GL}_{3}\left(\mathbf{A}_{F}\right)$ at every point s_{0} outside the critical line $\mathfrak{R}(s)=1 / 2$.

The case $\mathfrak{R s}>1$ is trivial since the L-function has a convergent Euler product expansion in this region. It is also well known that $L(\pi, 1+i t) \neq 0$, but we do not make use of this in order to stress that the method used here works for $\mathfrak{R} s=1$ as well. We hope that the method will give analogous results for other groups. In fact the original motivation for this work came from our attempt to prove a nonvanishing result for the degree- $5 L$-functions of $\mathrm{GSp}(4)$ at $s=1$, which if established will have implications for the classification of automorphic representations of $\mathrm{GSp}(4)$. We hope to treat this case in a future work.

Our proof follows the method used by Rohrlich, which consists in proving that for a large enough product q of distinct primes in \mathbf{Z}, the average value of $\left\{L\left(s_{0}, \pi \otimes \chi\right) \mid \chi\right.$: primitive finite-order character of conductor \mathfrak{q} of norm $\left.q\right\}$ is nonzero. (We have tried to use notations consistent with his.) However, we need some additional inputs; they are: bounds for certain Kloosterman-type sums due to Deligne [5], the behaviour of root numbers under twisting, the properties of L-functions of $\mathrm{GL}(n)$ and $\mathrm{GL}(n) \times \mathrm{GL}(n)$, and most importantly, a finer (s_{0}-dependent) estimate of the crucial sum Σ_{22} of [14] (see Proposition 5.1 below). We give full details for the parts which require arguments beyond the case $n=2$, referring

[^0]
[^0]: Received 6 October 1993. Revision received 30 November 1993.

