A FINITENESS THEOREM FOR ELLIPTIC CALABI-YAU THREEFOLDS

MARK GROSS

0. Introduction. For the purposes of this paper, we define a Calabi-Yau threefold to be an algebraic threefold X over the field of complex numbers which is birationally equivalent to a threefold Y with \mathbf{Q}-factorial terminal singularities, $K_{Y}=0$, and $\chi\left(\mathcal{O}_{Y}\right)=h^{1}\left(Y, \mathcal{O}_{Y}\right)=h^{2}\left(Y, \mathcal{O}_{Y}\right)=0$. In this case, we call Y a minimal Calabi-Yau threefold.

Calabi-Yau threefolds can be thought of as a generalization of K3 surfaces. If one considers possibly nonalgebraic K3 surfaces, they are all Kähler, and one obtains an irreducible 20-dimensional moduli space. Thus in particular, all K3 surfaces are homeomorphic. If one restricts one's attention to algebraic K3 surfaces, the situation becomes much more complicated: one obtains a countable number of 19dimensional components in the 20-dimensional space of Kähler K3s. In the case of Calabi-Yau threefolds, however, any deformation of an algebraic Calabi-Yau is algebraic, so it makes sense to restrict one's attention to algebraic Calabi-Yaus.

Given this, one could ask whether there are a finite number of topological types of algebraic Calabi-Yau threefolds. (This is known not to be true if one allows non-Kähler Calabi-Yau threefolds.) A stronger question to ask would be whether there are a finite number of families of algebraic minimal Calabi-Yau threefolds. Up to birational equivalence, we answer this stronger question for those CalabiYaus which possess an elliptic fibration.

Our main theorem is the following.
Theorem 0.1. There exists a finite number of triples $\left(\mathscr{X}_{i}, \mathscr{S}_{i}, \mathscr{T}_{i}\right)$ of quasi-projective varieties with maps

where π_{i} is smooth and proper with each fibre a Calabi-Yau threefold, f_{i} proper with generic fibre an elliptic curve, and g_{i} smooth and proper with each fibre a rational surface, such that for any elliptic fibration $X \rightarrow S$ with X Calabi-Yau and S rational there exists a $t \in \mathscr{T}_{i}$ for some i such that there are birational maps $X \rightarrow\left(\mathscr{X}_{i}\right)_{t}$,

Received 21 May 1993. Revision received 5 August 1993.
Research at MSRI supported in part by NSF grant DMS 9022140.

