LIFTING MODULAR MOD *l* REPRESENTATIONS

FRED DIAMOND AND RICHARD TAYLOR

Introduction. Fix an odd rational prime l and embeddings $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$ and $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_l$. Also identify $\overline{\mathbb{F}}_l$ with the residue field of $\mathcal{O}_{\overline{\mathbb{Q}}_l}$. By a λ -adic representation of a compact topological group G we shall mean a continuous representation $\rho: G \to GL_d(\overline{\mathbb{Q}}_l)$ which factors through $GL_d(E)$ for some finite extension E/\mathbb{Q}_l . By a mod l representation of G we mean a continuous representation $\overline{\rho}: G \to GL_d(\overline{\mathbb{F}}_l)$. If ρ is a λ -adic representation of G then ρ is conjugate to a representation with values in $GL_d(\mathcal{O}_{\overline{\mathbb{Q}}_l})$. Choosing such a conjugate representation we get (by reduction) a mod l representation $\overline{\rho}: G \to GL_d(\overline{\mathbb{F}}_l)$. We will call $\overline{\rho}$ a reduction of ρ and ρ a lift of $\overline{\rho}$. Neither necessarily determines the other uniquely, though by the Brauer-Nesbitt theorem the semisimplification $\overline{\rho}^{ss}$ of $\overline{\rho}$ is uniquely determined by ρ . (Note in particular that for a character $\chi: G \to \overline{\mathbb{F}}_l^{\times}$, there is a unique reduction $\overline{\chi}$.)

If <u>p</u> is a rational prime we shall use G_p to denote a decomposition group of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ at a prime above p and I_p to denote the inertia subgroup of G_p . We let χ_l denote the *l*-adic cyclotomic character, so that if $p \neq l$ is a rational prime we have $\chi_l(\operatorname{Frob}_p) = p^{-1}$.

Let f be an elliptic modular cusp form of weight $k \ge 1$ and level N. If f is an eigenform for the usual Hecke operators T_p and S_p for $p \nmid N$, then we have $f|T_p = \theta_f(T_p)f$ and $f|S_p = \theta_f(S_p)f$ where $\theta_f(T_p)$ and $\theta_f(S_p)$ are algebraic integers. Deligne has shown (following Eichler and Shimura in the case k = 2 and jointly with Serre in the case k = 1) that there is a λ -adic representation

$$\rho_f: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\overline{\mathbb{Q}}_l)$$

such that, if $p \nmid lN$, then ρ_f is unramified at p and $\rho_f(\operatorname{Frob}_p)$ has characteristic polynomial $X^2 - \theta_f(T_p)X + p\theta_f(S_p)$. Ribet has shown that ρ_f is irreducible and hence uniquely determined via the above characterisation (by the Cebotarev density theorem). It is known that det $\rho_f(c) = -1$ where c is a complex conjugation. This is expressed by saying that ρ_f is odd.

We shall call a λ -adic representation ρ of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ modular if it arises from some f as above. We call a mod l representation $\overline{\rho}$: $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\overline{\mathbb{F}}_l)$ modular if it is irreducible and isomorphic to the reduction of some ρ_f . Any such $\overline{\rho}$ is odd. Serre has conjectured that all continuous odd irreducible representations $\overline{\rho}$: $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\overline{\mathbb{F}}_l)$ are modular. We will say ρ and $\overline{\rho}$ are modular of weight k and level N if we can choose f of weight k and level N. We will say that $\overline{\rho}$ is modular of weight k

Received 12 July 1993. Revision received 9 October 1993.