BOUNDED LINEAR OPERATORS BETWEEN C*-ALGEBRAS

UFFE HAAGERUP AND GILLES PISIER

CONTENTS

Introduction	889
1. Operators between C*-algebras	894
2. Description of E_n^k	902
3. Random series in noncommutative L ₁ -spaces	905
4. Complements	911
References	924

Introduction. Let $u: A \rightarrow B$ be a bounded linear operator between two C^* -algebras A, B. The following result was proved in [P1].

THEOREM 0.1. There is a numerical constant K_1 such that for all finite sequences x_1, \ldots, x_n in A we have

$$(0.1)_1 \qquad \max\{\|(\sum u(x_i)^* u(x_i))^{1/2}\|_B, \|(\sum u(x_i) u(x_i)^*)^{1/2}\|_B\} \\ \leqslant K_1 \|u\| \max\{\|(\sum x_i^* x_i)^{1/2}\|_A, \|(\sum x_i x_i^*)^{1/2}\|_A\}$$

A simpler proof was given in [H1]. More recently, another alternate proof appeared in [LPP]. In this paper we give a sequence of generalizations of this inequality.

The above inequality $(0.1)_1$ appears as the case of "degree one" in this sequence. The next case of degree 2 seems particularly interesting, and so we now formulate it explicitly.

Let us assume that $A \subset B(H)$ (embedded as a C*-subalgebra) for some Hilbert space H, and similarly that $B \subset B(K)$. Let (a_{ij}) be an $n \times n$ matrix of elements of A. We define

$$[(a_{ij})]_{(2)} = \max\{\|(a_{ij})\|_{M_n(A)}, \|(a_{ij}^*)\|_{M_n(A)}, \|(\sum_{ij} a_{ij}^* a_{ij})^{1/2}\|_A, \|(\sum_{ij} a_{ij} a_{ij}^*)^{1/2}\|_A\}.$$

Then we have the following result:

Received 9 February 1993

Second author partially supported by the N.S.F.