AUTOMORPHISMS AND THE KÄHLER CONE OF CERTAIN CALABI-YAU MANIFOLDS

ANTONELLA GRASSI and DAVID R. MORRISON

Let X be the fiber product over \mathbb{P}^{1} of two rational elliptic surfaces with section as in the diagram

and let $\varphi=\pi_{1} \cdot p_{1}=\pi_{2} \cdot p_{2}: X \rightarrow \mathbb{P}^{1}$. Schoen [S] has shown that, if the surfaces are sufficiently general (see $\S 1$ and $\S 3$ below for the precise condition), then X is a smooth Calabi-Yau manifold. Let $\mathscr{K}(X)$ be the Kähler cone of X and let $\overline{\mathscr{K}(X)}$ be its closure. Since $h^{2,0}(X)=0$, the Kähler cone is the convex hull of the set $\mathscr{K}(X) \cap H^{2}(X, \mathbb{Q})$ of ample \mathbb{Q}-divisor classes on X. We define the nef cone $\mathscr{K}(X)_{+}$to be the convex hull of the set $\overline{\mathscr{K}(X)} \cap H^{2}(X, \mathbb{Q})$ of nef \mathbb{Q}-divisor classes. (This cone consists of the Kähler cone $\mathscr{K}(X)$ together with that part of the boundary of its closure which is rationally defined.) For a fiber product of rational elliptic surfaces with section, the nef cone is known to have infinitely many edges. Here we show that there is a fundamental domain which is a (finite) rational polyhedral cone, for the induced action of $\operatorname{Aut}(X)$ on $\mathscr{K}(X)_{+}$.

Our work was inspired by some recent conjectures of the second author [M1, M2] which derive from the "mirror symmetry" phenomenon for Calabi-Yau manifolds. In [M1], some of the data from the topological field theories introduced by Witten [W1, W2] is used to construct some novel variations of Hodge structure from Calabi-Yau manifolds. In [M2], the implications of this construction for possible compactifications of moduli spaces are explored. In particular, it is pointed out there that Looijenga's semitoric compactification method [L2] can be fruitfully applied in this situation provided that the action of the fundamental group on the nef cone has a rational polyhedral fundamental domain. This paper provides the first nontrivial example of such a structure.

General results of Wilson [Wi] tell us that away from its intersection with the cubic cone W^{*} defined by cup-product, the closure $\overline{\mathscr{K}}$ of the Kähler cone of a

