MONODROMY OF THE HYPERGEOMETRIC DIFFERENTIAL EQUATION OF TYPE (3, 6), I

KEIJI MATSUMOTO, TAKESHI SASAKI, NOBUKI TAKAYAMA, and MASAAKI YOSHIDA

To Professor Joji Kajiwara on his sixtieth birthday

CONTENTS

403
406
408
410
414
416
419
424
426

0. Introduction. Fix positive integers r and $n \ge r + 1$, and complex numbers $\alpha_1, \ldots, \alpha_n$ such that

 $\alpha_1,\ldots,\alpha_n, \qquad \alpha_1+\cdots+\alpha_n\notin\mathbb{Z}.$

Let L_i $(1 \le j \le n)$ be linear forms in $t = (t_0 = 1, t_1, \dots, t_r) \in \mathbb{C}^r$:

$$L_j = \sum_{i=0}^r x_{ij} t_i,$$

where $x = (x_{ij})$ are complex variables such that any $(r + 1) \times (r + 1)$ minor of the matrix

[1	<i>x</i> ₀₁		x_{0n}
0	<i>x</i> ₁₁	•••	x_{1n}
	÷	•••	:
lo	x_{r1}	•••	x_{rn}

Received 16 May 1992. Revision received 29 January 1993.