MONODROMY OF THE HYPERGEOMETRIC DIFFERENTIAL EQUATION OF TYPE (3, 6), I

KEIJI MATSUMOTO, TAKESHI SASAKI, NOBUKI TAKAYAMA, and MASAAKI YOSHIDA

To Professor Joji Kajiwara on his sixtieth birthday

Contents

0 . Introduction 403

1. The configuration space X, the submanifold Q, and a base arrangement 406
2. Twisted cycles and a basis of solutions 408
3. Circuit matrix $M(1, \ldots, r+1 ; \alpha)$ 410
4. Relation between $E(r+1, n+1 ; \alpha)$ and $E\left(2, n+1 ; \alpha^{\prime}\right)$ 414
5. Action of the braid group B_{n+1} on a collection of solutions of $E(2, n+1 ; \alpha)$ 416
6. Circuit matrices $M(J ; \alpha)$ 419
7. Generators of the monodromy group of $E(3,6 ; \alpha)$ 424
References 426
8. Introduction. Fix positive integers r and $n(\geqslant r+1)$, and complex numbers $\alpha_{1}, \ldots, \alpha_{n}$ such that

$$
\alpha_{1}, \ldots, \alpha_{n}, \quad \alpha_{1}+\cdots+\alpha_{n} \notin \mathbb{Z} .
$$

Let $L_{j}(1 \leqslant j \leqslant n)$ be linear forms in $t=\left(t_{0}=1, t_{1}, \ldots, t_{r}\right) \in \mathbb{C}^{r}$:

$$
L_{j}=\sum_{i=0}^{r} x_{i j} t_{i},
$$

where $x=\left(x_{i j}\right)$ are complex variables such that any $(r+1) \times(r+1)$ minor of the matrix

$$
\left(\begin{array}{cccc}
1 & x_{01} & \cdots & x_{0 n} \\
0 & x_{11} & \cdots & x_{1 n} \\
\vdots & \vdots & \cdots & \vdots \\
0 & x_{r 1} & \cdots & x_{r n}
\end{array}\right)
$$

Received 16 May 1992. Revision received 29 January 1993.

