# ON THE FIRST BETTI NUMBER OF A HYPERBOLIC MANIFOLD WITH AN ARITHMETIC FUNDAMENTAL GROUP 

JIAN-SHU LI and JOHN J. MILLSON

1. Introduction. The purpose of this paper is to address the following problem. Let $\Gamma$ be an arithmetic lattice in $\operatorname{SO}(n, 1)$. Does there exist a subgroup $\Gamma^{\prime} \subset \Gamma$ of finite index such that the first Betti number $b_{1}\left(\Gamma^{\prime}\right) \neq 0$ ? Equivalently, is the abelianization of $\Gamma^{\prime}$ infinite? We observe that the problem is solved by Millson [Mila] when the lattice $\Gamma$ is commensurable with the group of units of a quadratic form over a totally real field which has signature $(n, 1)$ at one real place and is anisotropic at the remaining real places. In particular, it is solved for the noncocompact arithmetic lattices. Indeed, for $n \neq 7$ it is a well-known consequence of [Wei] that every noncocompact arithmetic $\Gamma$ is commensurable with the group of units of a quadratic form over $\mathbf{Q}$ with signature ( $n, 1$ ). For $n=7$ one must also consider the exceptional rational structures on $\operatorname{SO}(7,1)$ due to the existence of extra automorphisms of the Dykin diagram of type $D_{4}$. By the classification of semisimple algebraic groups over number fields [Tit], the only exceptional simple groups that could possibly give rise to noncocompact arithmetic lattices in $\operatorname{SO}(7,1)$ are those of types ${ }^{3} D_{4,1}^{9}$ and ${ }^{6} D_{4,1}^{9}$ listed on page 58 of [Tit]; the corresponding "Tits diagram" has the simple root in the middle circled. Hence the corresponding group of real points cannot be locally isomorphic to $S O(7,1)$ since the latter has a Tits diagram with the middle root not circled. Thus for all $n$ a noncocompact arithmetic $\Gamma$ must be commensurable with the group of units of a quadratic form over $\mathbf{Q}$ with signature ( $n, 1$ ) and, consequently, contains a congruence subgroup $\Gamma^{\prime}$ with $b_{1}\left(\Gamma^{\prime}\right) \neq$ 0 by [Mila].

By the above considerations, if $\Gamma$ is any arithmetic lattice of $O(n, 1)$ other than those considered in [Mila], then it must be cocompact. In fact, if $n \neq 3,7$, then it must be commensurable with the group of units of an appropriate skew-hermitian form over a quaternion field (see Section 2). This second family of arithmetic lattices exists only when $n$ is odd. They were recently considered in [Li], where it is shown that if $n>5$ and $\Gamma$ is such a lattice, then it contains a congruence subgroup $\Gamma^{\prime}$ with $b_{1}\left(\Gamma^{\prime}\right) \neq 0$. In this paper we give a new proof of this result covering the new case $n=5$ as well. The main result is the following one.

Theorem. Let $\Gamma$ be an arithmetic lattice in $\operatorname{SO}(n, 1), n \neq 3,7$. Then $\Gamma$ contains $a$ congruence subgroup $\Gamma^{\prime}$ such that $b_{1}\left(\Gamma^{\prime}\right) \neq 0$.

[^0]
[^0]:    Received 2 January 1993.
    Li a Sloan Fellow. Supported in part by NSF grant No. DMS-9003999.
    Millson partially supported by NSF grant No. DMS-9002116.

