LOCATING THE PEAKS OF LEAST-ENERGY SOLUTIONS TO A SEMILINEAR NEUMANN PROBLEM

WEI-MING NI and IZUMI TAKAGI

To Professor Takeshi Kotake on the occasion of his 60th birthday

1. Introduction and statement of results. In this paper we continue our study initiated in [7] and [9] on the shape of certain solutions to a semilinear Neumann problem arising in mathematical models of biological pattern formation. Let Ω be a bounded domain in \mathbb{R}^{N} with smooth boundary $\partial \Omega$ and let v be the unit outer normal to $\partial \Omega$. In [7] and [9] we considered the Neumann problem for certain semilinear elliptic equations including

$$
\left\{\begin{array}{l}
d \Delta u-u+u^{p}=0 \quad \text { and } \quad u>0 \text { in } \Omega, \tag{BVP}\\
\partial u / \partial v=0 \text { on } \partial \Omega
\end{array}\right.
$$

where $d>0$ and $p>1$ are constants and $\Delta=\sum_{i=1}^{N} \partial^{2} / \partial x_{i}^{2}$ denotes the Laplace operator. This problem is encountered in the study of steady-state solutions to some reaction-diffusion systems in chemotaxis as well as in morphogenesis (for details, see [7] and the references therein).

Assume that p is subcritical, i.e., $1<p<(N+2) /(N-2)$ when $N \geqslant 3$ and $1<p<+\infty$ when $N=2$. Then we can apply the mountain-pass lemma to obtain a least-energy solution u_{d} to $(B V P)_{d}$, by which it is meant that u_{d} has the smallest energy $J_{d}(u)=\frac{1}{2} \int_{\Omega}\left(d|\nabla u|^{2}+u^{2}\right) d x-(p+1)^{-1} \int_{\Omega} u_{+}^{p+1} d x$, where $u_{+}=\max \{u, 0\}$, among all the solutions to $(B V P)_{d}([7$, Theorem 2] and [9, Lemma 3.1]). It turns out that $u_{d} \equiv 1$ if d is sufficiently large ($\left[7\right.$, Theorem 3]), whereas u_{d} exhibits a "point-condensation phenomenon" as $d \downarrow 0$. More precisely, when d is sufficiently small, u_{d} has only one local maximum over $\bar{\Omega}$ (thus it is the global maximum), and the maximum is achieved at exactly one point P_{d} on the boundary. Moreover, $u_{d}(x) \rightarrow 0$ as $d \downarrow 0$ for all $x \in \Omega$, while $\max u_{d} \geqslant 1$ for all $d>0$ ([9, Theorems 2.1 and 2.3]).

Hence, a natural question raised immediately is to ask where on the boundary the maximum point P_{d} is situated, and it is the purpose of the present paper to answer this question. Indeed, we shall show that $H\left(P_{d}\right)$, the mean curvature of $\partial \Omega$ at P_{d}, approaches the maximum of $H(P)$ over $\partial \Omega$ as $d \downarrow 0$, as was announced in [9]. (See Theorem 1.2 below.)

Now we formulate our problem and state the results. Keeping $(B V P)_{d}$ in mind, first of all we formulate the problem as follows. Let Ω be a bounded domain in \mathbb{R}^{N}

