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ISOSPECTRAL COMPACT FLAT MANIFOLDS

ISABEL DOTTI MIATELLO AND ROBERTO J. MIATELLO

1. Introduction. It was shown by Milnor I-4] that there exist pairs ofisospectral,
nonisometric fiat tori of dimension 16. (It is now known that such tori exist in
dimension > 8 !-33.) Also, each isospectral class of compact flat Riemannian mani-
folds contains finitely many isometry classes [8].
The purpose of the present paper is to show that isospectrality is quite a common

phenomenon among compact flat manifolds, even in low dimensions, and with zero
first Betti number (see Corollary 3.2). Our main result is the following theorem.

THEOREM 1.1. If n > 5, there exist pairs of isospectral nonhomeomorphic compact
fiat Riemannian manifolds M,

_
of dimension n, with holonomy group zR, 2 < k <

n 3. Furthermore, M, M can be chosen so that fll h for any h with 1 < h < n 3,
l, 2. If n > 6, then we can choose M, M to have fll O, 1, 2 and holonomy

lroup zk2 for any k with 3 < k < n 3.
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2. Certain Bieberbach groups. A discrete cocompact subgroup F ofI(Rn) is said
to be a crystallographic group. A Bieberbach group is a crystallographic group
which is torsion-free. A compact connected fiat Riemannian manifold M has eucli-
dean space R as its universal covering space and a Bieberbach group F as funda-
mental group. By Bieberbach’s first theorem, if A denotes the subgroup of transla-
tions in a crystallographic group, then A is a lattice in R. Furthermore, A is a
normal and maximal abelian subgroup of F. When F is torsion-free, the geometric
interpretation ofA\F is that ofthe (linear) holonomy group ofthe flat manifold M.
By a theorem of Auslander-Kuranishi [1-1, any finite group G arises as the

holonomy group of a compact flat manifold. On the other hand, it is an open
question, in general, to find the minimal dimension for fiat manifolds with prescribed
G as its holonomy group (see for instance [5]). The purpose of this section is to
describe a concrete construction which allows one to produce examples in dimen-
sion n > 3, of compact fiat manifolds having holonomy group Z, 1 < k < n 1.
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