ON THE DISTRIBUTION OF THE NUMBER OF LATTICE POINTS INSIDE A FAMILY OF CONVEX OVALS

PAVEL BLEHER

1. Introduction. Let γ be a simple convex closed smooth curve defined in the plane $x \in \mathbb{R}^2$ by an equation

$$x = X(t), \quad 0 \le t \le 1 \quad (X(0) = X(1)).$$

Let γ_R , R > 0, be the curve defined by the equation

$$x=RX(t);$$

i.e., γ_R is the homothety of γ with the coefficient R. Let $\Omega_{\gamma}(R)$ be the domain enclosed by $\gamma_R, \alpha \in \mathbb{R}^2$ be a fixed point in the plane, $\alpha + \mathbb{Z}^2 = \{x = \alpha + n, n \in \mathbb{Z}^2\}$ be a shifted square lattice, and

$$N_{\nu}(R; \alpha) = |\Omega_{\nu}(R) \cap (\alpha + \mathbb{Z}^2)|$$

be the number of lattice points lying within γ_R . Finally, let

$$F_{\gamma}(R; \alpha) = \frac{N_{\gamma}(R; \alpha) - \operatorname{Area} \Omega_{\gamma}(R)}{\sqrt{R}}.$$
 (1.1)

We are interested in the distribution of $F_{\gamma}(R; \alpha)$ on the half-line $\{R > 0\}$. Our main result is the following theorem.

THEOREM 1.1. Let γ be a simple C^7 -smooth (i.e., $X(t) \in C^7([0, 1])$) closed convex curve with positive curvature, such that the origin lies inside γ , and let α be a fixed point in the plane. Then for every probability density p(x) on [0, 1] and every bounded continuous function g(x) on \mathbb{R}^1 ,

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T g(F_{\gamma}(R;\alpha))p(R/T)\,dR = \int g(x)\nu_{\gamma}(dx;\alpha) \tag{1.2}$$

where $v_{\gamma}(dx; \alpha)$ is a probability distribution on \mathbb{R}^{1} , which does not depend on p(x) and g(x). In addition,

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T F_{\gamma}(R; \alpha) p(R/T) \, dR = \int x v_{\gamma}(dx; \alpha) = 0 \tag{1.3}$$

Received 28 January 1992.