ON THE DISTRIBUTION OF THE NUMBER OF LATTICE POINTS INSIDE A FAMILY OF CONVEX OVALS

PAVEL BLEHER

1. Introduction. Let γ be a simple convex closed smooth curve defined in the plane $x \in \mathbf{R}^{2}$ by an equation

$$
x=X(t), \quad 0 \leqslant t \leqslant 1 \quad(X(0)=X(1)) .
$$

Let $\gamma_{R}, R>0$, be the curve defined by the equation

$$
x=R X(t)
$$

i.e., γ_{R} is the homothety of γ with the coefficient R. Let $\Omega_{\gamma}(R)$ be the domain enclosed by $\gamma_{R}, \alpha \in \mathbf{R}^{2}$ be a fixed point in the plane, $\alpha+\mathbf{Z}^{2}=\left\{x=\alpha+n, n \in \mathbf{Z}^{2}\right\}$ be a shifted square lattice, and

$$
N_{\gamma}(R ; \alpha)=\left|\Omega_{\gamma}(R) \cap\left(\alpha+\mathbf{Z}^{2}\right)\right|
$$

be the number of lattice points lying within γ_{R}. Finally, let

$$
\begin{equation*}
F_{\gamma}(R ; \alpha)=\frac{N_{\gamma}(R ; \alpha)-\operatorname{Area} \Omega_{\gamma}(R)}{\sqrt{R}} . \tag{1.1}
\end{equation*}
$$

We are interested in the distribution of $F_{\gamma}(R ; \alpha)$ on the half-line $\{R>0\}$. Our main result is the following theorem.

Theorem 1.1. Let γ be a simple C^{7}-smooth (i.e., $\left.X(t) \in C^{7}([0,1])\right)$ closed convex curve with positive curvature, such that the origin lies inside γ, and let α be a fixed point in the plane. Then for every probability density $p(x)$ on $[0,1]$ and every bounded continuous function $g(x)$ on \mathbf{R}^{1},

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} g\left(F_{\gamma}(R ; \alpha)\right) p(R / T) d R=\int g(x) v_{\gamma}(d x ; \alpha) \tag{1.2}
\end{equation*}
$$

where $v_{\gamma}(d x ; \alpha)$ is a probability distribution on \mathbf{R}^{1}, which does not depend on $p(x)$ and $g(x)$. In addition,

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} F_{\gamma}(R ; \alpha) p(R / T) d R=\int x v_{\gamma}(d x ; \alpha)=0 \tag{1.3}
\end{equation*}
$$

[^0]
[^0]: Received 28 January 1992.

