COMPLEX HÉNON MAPPINGS IN C² AND FATOU-BIEBERBACH DOMAINS

JOHN ERIK FORNÆSS AND NESSIM SIBONY

Introduction. For $(a, c) \in \mathbb{C}^* \times \mathbb{C}$ the formula

$$g(z, w) = (z^2 + c + aw, z)$$

defines a biholomorphism in \mathbb{C}^2 whose Jacobian is -a. These are the complex continuations of the maps studied by Hénon when $(z, w) \in \mathbb{R}^2$ and $(a, c) \in \mathbb{R}^* \times \mathbb{R}$. In [H] Hubbard introduced the following terminology. Let

$$K^{\pm} = \{p; p \in \mathbb{C}^2, g^{\pm n}(p) \text{ is a bounded sequence}\}.$$

Also let $J^{\pm} = \partial K^{\pm}$ and $K = K^{+} \cap K^{-}$. As in [Br] and [H], we define the functions

$$G^+(z, w) = \lim_{n \to \infty} \frac{1}{2^n} \log^+ \|g^n(z, w)\|$$

and

$$G^{-}(z, w) = \lim_{n \to \infty} \frac{1}{2^n} \log^+ \|g^{-n}(z, w)\|.$$

It was shown in [H], [BS1], that G^{\pm} are continuous functions in \mathbb{C}^2 plurisub-harmonic in $U^+ = \mathbb{C}^2 \backslash K^+$ and $U^- = \mathbb{C}^2 \backslash K^-$, respectively. It follows that K^+ and K^- are nonpluripolar closed sets.

Define $\mu^{\pm} = dd^c G^{\pm}$. The positive, closed (1, 1) currents μ^{\pm} satisfy the functional equations

$$g^*\mu^{\pm} = 2^{\pm 1}\mu^{\pm}$$
.

It was shown by Bedford and Smillie [BS2] that, if V is an algebraic curve in \mathbb{C}^2 , then the currents $(1/2^n)[g^{-n}(V)]$ converge to a constant multiple of μ^+ . Assuming that g is hyperbolic on $J = J^+ \cap J^-$, Bedford and Smillie showed that the interior of K^+ consists of the basins of finitely many sink orbits and that J^+ has a foliation \mathscr{F}^+ whose leaves are complex manifolds biholomorphically equivalent to \mathbb{C} .

Received 29 May 1990.

The first author has been partially supported by an NSF grant.