ON GABRIELOV'S REGULARITY CONDITION FOR ANALYTIC MAPPINGS

WIESŁAW PAWŁUCKI

1. Introduction. Let $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Let X and Y denote analytic manifolds over \mathbb{K} . (All manifolds are assumed to be finite-dimensional and countable at infinity.) Let \mathcal{O}_X and \mathcal{O}_Y denote the sheaves of germs of analytic functions on X and Y, respectively. Suppose that $\varphi: X \to Y$ is an analytic mapping. Let $\varphi^{-1}\mathcal{O}_Y$ denote the inverse image of \mathcal{O}_Y by φ . Then the stalks of $\varphi^{-1}\mathcal{O}_Y$ are given by $(\varphi^{-1}\mathcal{O}_Y)_x = \mathcal{O}_{Y,\varphi(x)}$.

Let $x \in X$. Then φ induces a homomorphism of local algebras $\varphi_x^* \colon \mathcal{O}_{Y,\varphi(x)} \to \mathcal{O}_{X,x}$ and, thereby, a homomorphism of sheaves of local algebras (on X) $\varphi^* \colon \varphi^{-1}\mathcal{O}_Y \to \mathcal{O}_X$. We also have a homomorphism of the completions $\hat{\varphi}_x^* \colon \hat{\mathcal{O}}_{Y,\varphi(x)} \to \hat{\mathcal{O}}_{X,x}$ induced by φ_x^* .

We can consider the following three kinds of rank of φ at x (the invariants of Gabrielov [10]):

 $r_1(x) =$ the generic rank of φ near x, $r_2(x) =$ the Krull dimension of $\hat{\mathcal{O}}_{Y,\varphi(x)}/\text{Ker } \hat{\varphi}_x^*$,

and

 $r_3(x)$ = the Krull dimension of $\mathcal{O}_{Y,\varphi(x)}/\text{Ker }\varphi_x^*$.

It is easy to see that $r_1(x) \leq r_2(x) \leq r_3(x)$.

Following Bierstone and Milman [2, 3, 4], we say that φ is regular at x (in the sense of Gabrielov) if $r_1(x) = r_3(x)$. In other words, φ is regular at x if there exists a neighborhood U of x in X and a locally analytic subset S of Y of dimension $r_1(x)$ such that $\varphi(U) \subset S$. (Clearly, one can always take S to be irreducible at $\varphi(x)$.) It follows that regularity at x is an open condition. We say that φ is regular if it is regular at each point $x \in X$.

The above regularity condition was first considered by Gabrielov [10]. Further papers connected with it were published by Milman [25], Becker and Zame [1], Izumi [19, 20], Bierstone with Milman [2, 3, 4], Tougeron [35], and Spivakovsky [34].

Bierstone and Milman [2, 3, 4] apply regular mappings to differential analysis. One of their results is the following solution to the composition problem of Glaeser [12].

Suppose that X and Y are real analytic manifolds and that $\varphi: X \to Y$ is a semiproper analytic regular mapping. Let $C^{\infty}(X)$ denote the Fréchet algebra of C^{∞} functions on

Received 15 August 1990. Revision received 15 July 1991.