
Vol. 64, No. 2 DUKE MATHEMATICAL JOURNAL (C) November 1991

THE POINCARI METRIC AND A CONFORMAL
VERSION OF A THEOREM OF THURSTON

RICHARD D. CANARY

1. Introduction. If one is to understand the quasi-conformal deformation
theory of a Kleinian group, one must be able to translate information about the
conformal structure at infinity into information about the internal geometry of
the associated hyperbolic 3-manifold. One of the best examples of such a relationship
is given by a theorem of Sullivan which says that there exists K such that, if every
component of the domain of discontinuity Dr of a finitely generated Kleinian group
F is simply connected, then the Poincar6 metric on Dr/F is K-quasi-isometric to
the hyperbolic structure on the boundary of the convex core of []q]3/I. See Epstein-
Marden [9]. In this note we will show that given A there exists R such that, if F is
any nonelementary Kleinian group such that every geodesic in the domain of dis-
continuity Dr has length at least A (in the Poincar6 metric on Dr) and c is any closed
curve in S Dr then

l(c*) < Rls(c)

where ls(c) denotes the length of c in the Poincar metric on S and l(c*) is either
equal to the length of the closed geodesic c* in N 3/F homotopic to c or zero
if no such geodesic exists. As a corollary of this observation, combined with Ahlfors’s
finiteness theorem, we see that, if F is any nonelementary finitely generated Kleinian
group, then there exists some Rr such that l(c*) < Rrls(c) for any closed curve c
onS.
We then apply our main result to study algebraic convergence of sequences of

quasi-conformally conjugate Kleinian groups. In Section 3 we prove a conformal
version of a compactness theorem of Thurston. In Section 4 we prove a generaliza-
tion of Bers’s slice theorem. In both cases we will combine Thurston’s original com-
pactness theorem, whose hypotheses are in terms of the internal geometry of the
associated hyperbolic manifolds, with our main result to obtain compactness re-
suits whose conditions are in terms of the conformal structures at infinity.

2. The Poincar metric and the internal geometry. A Kleinian lroup is a discrete
faithful representation p: G PSL2(C). We will denote the image p(G) by F.
The group PSL2(C is naturally identified, via the upper half-space model, with the
group Isom/ (H 3) of orientation preserving isometries of hyperbolic 3-space. The
extended complex plane C w (}, regarded as the sphere at infinity for 3, is
divided into the limit set Lr for F’s action and the domain of discontinuity Dr. (See
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