CLASSIFICATION OF SOLUTIONS OF SOME NONLINEAR ELLIPTIC EQUATIONS

WENXIONG CHEN and CONGMING LI

0. Introduction. The work concerning the symmetry of solutions of secondorder elliptic equations on an unbounded domain was first done by Gidas, Ni, and Nirenberg [2], and then generalized to infinite cylinders by Berestycki and Nirenberg [3]. Recently, Li improved their results and simplified the proofs; see [1].
In the elegant paper of Gidas, Ni , and Nirenberg [2], one of the interesting results is on the symmetry of the solutions of

$$
\begin{equation*}
\Delta u+u^{p}=0, \quad x \in R^{N}, \quad n \geqslant 3 . \tag{1}
\end{equation*}
$$

They proved that for $p=(n+2) /(n-2)$ all the positive solutions of (1) with reasonable behavior at infinity, namely $u=O\left(|x|^{2-n}\right)$, are radially symmetric about some point, and hence assume the form $u(x)=\left[n(n-2) \lambda^{2}\right]^{(n-2) / 4} /\left(\lambda^{2}+\left|x-x^{0}\right|^{2}\right)^{(n-2) / 2}$ for $\lambda>0$ and some $x^{0} \in R^{n}$. This uniqueness result, as was pointed out by R. Schoen, is in fact equivalent to the geometric result due to Obata [4]: A Riemannian metric on S^{n} which is conformal to the standard one and having the same constant scalar curvature is the pullback of the standard one under a conformal map of S^{n} to itself. Recently, Caffarelli, Gidas, and Spruck [5] removed the growth assumption $u=$ $O\left(|x|^{2-n}\right)$ and proved the same result. In the case that $1 \leqslant p<(n+2) /(n-2)$, Gidas and Spruck [6] showed that the only nonnegative solution of (1) is 0 .

Another similar problem of interest is the uniqueness of the solutions of the following problem

$$
\left\{\begin{array}{l}
\Delta u+\exp u=0, \quad x \in R^{2} \tag{2}\\
\int_{R^{2}} \exp u(x) d x<+\infty .
\end{array}\right.
$$

It is known that $\phi_{\lambda, x^{0}}(x)=\ln \left(32 \lambda^{2}\right) /\left(4+\lambda^{2}\left|x-x^{0}\right|^{2}\right)^{2}, \lambda>0, x^{0} \in R^{2}$ is a family of explicit solutions. Then one would naturally ask if these are the only solutions of (2).

In Section 1 of this paper, based on an estimate of the upper bound on the solutions at infinity, applying the method of moving planes improved in Li [1], we prove the following theorem.

Theorem 1. Every solution of (2) is radially symmetric with respect to some point in R^{2} and hence assumes the form of $\phi_{\lambda, x^{0}}(x)$.

