FULLY NONLINEAR OBLIQUE DERIVATIVE PROBLEMS FOR NONLINEAR SECOND-ORDER ELLIPTIC PDE'S

HITOSHI ISHII

§1. Introduction. In this paper we are concerned with the fully nonlinear elliptic PDE

(1.1)
$$F(x, u, Du, D^2u) = 0 \quad \text{in } \Omega.$$

Here Ω is a bounded open subset of \mathbb{R}^N with C^1 boundary, *u* represents a real unknown function on $\overline{\Omega}$, *F* is a given real function on $\overline{\Omega} \times \mathbb{R} \times \mathbb{R}^N \times \mathbb{S}^N$, where \mathbb{S}^N denotes the space of real $N \times N$ symmetric matrices with the usual ordering, and Du and D^2u denote the gradient and Hessian matrix of *u*, respectively.

Associated with (1.1) is the fully nonlinear oblique derivative boundary condition

(1.2)
$$B(x, u, Du) = 0 \quad \text{on } \partial\Omega.$$

Here, by "obliqueness" we mean that B satisfies

(1.3)
$$\langle n(x), D_n B(x, r, p) \rangle > 0$$
 for $(x, r, p) \in \partial \Omega \times \mathbb{R} \times \mathbb{R}^N$,

where $\langle \xi, \eta \rangle$ and $D_p B(x, r, p)$ denote the Euclidean inner product of $\xi, \eta \in \mathbb{R}^N$ and the gradient of B with respect to the variable p, respectively.

Our basic assumption on F is the degenerate ellipticity. That is, we assume that

(1.3)
$$F(x, r, p, X) \leq F(x, r, p, Y) \quad \text{if } X \geq Y$$

for all $(x, r, p) \in \overline{\Omega} \times \mathbb{R} \times \mathbb{R}^N$ and $X, Y \in \mathbb{S}^N$. The strong degeneracy of this ellipticity condition allows (1.1) to cover a fairly large class of PDE's including first-order PDE's. Problem (1.1) and (1.2) thus does not have a classical solution in general, and we here adopt the notion of viscosity solution (see §2) as weak solutions to (1.1) and (1.2).

There is a great deal of literature concerned with oblique derivative problems for (1.1). We refer the reader, if interested in classical approaches to the existence and

Received 20 February 1990. Revision received 3 August 1990.

Author supported in part by Grant-in-Aid for Scientific Research (No. 62540066 and No. 63540072), Ministry of Education, Science and Culture.