ON HIGHER WEIERSTRASS POINTS

FERNANDO CUKIERMAN AND LUNG-YING FONG

This paper deals with flexes of the n-canonical linear series, or n-Weierstrass points, on a compact Riemann surface.

Based on the theory of Limit Linear Series of Eisenbud and Harris we identify the limit of the n-canonical linear series, and hence the limits of its flexes, as a smooth curve degenerates to a stable curve of compact type. This allows us to prove some propositions that have known analogues in the case of 1-Weierstrass points.

After some preliminaries in the first four sections, we consider in §5 the "Hurwitz problem": which sequences occur as vanishing sequences of *n*-Weierstrass points? By a regeneration argument we prove (Theorem 5.3) that every sequence of low enough weight occurs in the right dimension. Also, we reprove Lax's result [L], Theorem 3, to the effect that a general curve of genus $g \ge 3$ has only ordinary n-Weierstrass points.

In §6 we prove that the hypersurfaces \mathscr{W}_q^n of *n*-Weierstrass points in the moduli spaces of pointed curves are irreducible; see Theorem 6.1 for a more precise statement. We do this by showing that the monodromy of $\mathscr{W}_{g}^{n} \to \mathscr{M}_{g}$ is transitive; the basic idea to generate monodromy being as in [E-H, 3], namely, to vary the limit *n*-canonical series of a fixed curve.

In the last section we compute the linear equivalence class of the closure of \mathscr{W}_{a}^{n} in the moduli space of stable pointed curves. This adds some more members to our collection of effective divisor classes on moduli space (see Remark 7.8).

CONTENTS

§1.	Flexes	179
§2.	<i>n</i> -Weierstrass points	180
§3.	Limit linear series	182
§4.	Limit <i>n</i> -canonical series	183
§5.	Existence of <i>n</i> -Weierstrass points	191
§6.	Irreducibility of \mathcal{W}_{g}^{n}	195
§7.	Class of $\overline{\mathscr{W}_{g}^{n}}$	200

§1. Flexes. Let X be a smooth irreducible complete algebraic curve over the complex numbers, and L a g_d^r on X (that is, $L = (V, \mathcal{L})$ where \mathcal{L} is a line bundle on X of degree d and V is a linear space of sections of \mathcal{L} , of dimension r + 1).

Received 3 February 1989. Revision received 3 November 1989.

We are grateful to David Eisenbud, Mark Green and Joe Harris for helpful conversations. The first author would like to thank the National Science Foundation for partial support.