DISTINGUISHED *p*-ADIC REPRESENTATIONS

JEFF HAKIM

§1. Introduction. Let E/F be a quadratic extension of number fields, and M a quaternion algebra over F. Let H and G be the multiplicative groups of M and $M \otimes_F E$, respectively, thought of as the F-rational points of two F-groups. The "relative trace formula" describes the integrals

$$I(f) = \int \int K^{f}_{cusp}(x, y) \, dx \, dy, \qquad x, y \in Z_{H}(F_{\mathbb{A}})H(F) \setminus H(F_{\mathbb{A}}),$$

where K_{cusp}^{f} is the cuspidal kernel associated to a Hecke function f on $G(F_{A})$ and Z_{H} is the center of H. (See [5].) For a suitable finite set S of places of F, this is expressed as a linear combination of characters

(*)
$$I(f) = \sum_{\pi} a_{\pi} \chi_{\pi}(f^S),$$

where $f^{S} = \bigotimes_{v \notin S} f_{v}$ and π ranges over the automorphic, cuspidal representations of $G(F_{A})$, with trivial central character, which are "unramified outside S." (Additional assumptions on f assure that the functions f^{S} comprise a commutative algebra.) Comparisons involving the relative trace formula for two such algebras M_{1} and M_{2} come down to comparing two expressions of the form (*) and equating coefficients.

If f can be chosen so that the coefficient a_{π} is nonzero, then π is said to be a *distinguished representation*. Equivalently, there exists a smooth function φ in the space of π such that $B(\varphi) \neq 0$ where

$$B(\varphi) = \int_{Z_H(F_A)H(F)\setminus H(F_A)} \varphi(h) \, dh \, .$$

It has been shown in [4] and [8] that an automorphic, cuspidal representation π of $GL(2, E_A)$ is distinguished precisely when it is the base change lift of an automorphic cuspidal representation of $GL(2, F_A)$ whose central character is the quadratic idele class character of F attached to E.

The original motivation for distinguished representations can be found in [4], where the authors investigate the poles of the Hasse-Weil functions attached to a certain Shimura surface. A formula of Brylinski-Labesse is used to express the zeta function in terms of Eisenstein integrals which have poles with residue $B(\varphi)$. The

Received 18 November 1989. Revision received 2 April 1990.