GREEN'S CURRENTS AND HEIGHT PAIRING ON COMPLEX TORI

JEAN-BENOÎT BOST

In this paper, we prove the following theorem, which extends a result of Bloch and Hain (cf. [BH] and §4).

Theorem 0.1. Let A be a complex torus of dimension n and let Z_{1} and Z_{2} be two analytic cycles in A, of respective codimensions p_{1} and p_{2}, such that $p_{1}+p_{2}=n+1$ and $\left|Z_{1}\right| \cap\left|Z_{2}\right|=\varnothing$. Let $Z_{1} \boxminus Z_{2}$ be the divisor in A defined as the direct imaqe of the cycle $Z_{1} \times Z_{2}$ in $A \times A$ by the map

$$
\begin{gathered}
A \times A \rightarrow A \\
(x, y) \mapsto x-y .
\end{gathered}
$$

Then we have

$$
\begin{equation*}
\left\langle Z_{1}, Z_{2}\right\rangle_{\infty}=\left\langle\{0\}, Z_{1} \boxminus Z_{2}\right\rangle_{\infty} \tag{0.1}
\end{equation*}
$$

The bracket \langle,\rangle_{∞} denotes the height pairing between cycles "at infinite places" introduced by Gillet and Soulé ([GS1]) and by Beilinson ([Be2]). This archimedean height pairing depends a priori on the choice of a Kähler metric on A. Here, we take any translation invariant metric on A; the height pairing does not depend on the chosen invariant metric.

The archimedean height pairing $\left\langle Z_{1}, Z_{2}\right\rangle_{\infty}$ was first introduced by Bloch and by Beilinson ([B12], [Be1]) for homologically trivial cycles. Then its definition does not require any additional structure, such as a Kähler metric, on the ambient variety. Theorem 0.1 shows that even when one is concerned only by the pairing between homologically trivial cycles-for instance, when one deals with the Bloch-Beilinson conjectures-the extended definition may be relevant.

We will give two proofs of Theorem 0.1. First, it will be obtained as a consequence of the following statement, which is analogous to the well-known formula of "reduction to the diagonal" in ordinary intersection theory (see also [B12], equation (3.11)).

