BIEXTENSIONS AND HEIGHTS ASSOCIATED TO CURVES OF ODD GENUS

RICHARD HAIN

1. Introduction. Suppose that \mathscr{X}^{n+1} is a regular, projective scheme over spec \mathbb{Z} . One can think of \mathscr{X} as being a family of *n*-dimensional projective varieties over the curve spec \mathbb{Z} : the fiber X_p of $\pi: \mathscr{X} \to \operatorname{spec} \mathbb{Z}$ over the prime ideal (p) is simply the reduction of \mathscr{X} modulo p. The base spec \mathbb{Z} can be compactified by adding a point ∞ corresponding to the imbedding of \mathbb{Z} into \mathbb{C} . The family π is then compactified by adding the complex points X_{∞} of \mathscr{X} , an n-dimensional complex projective manifold, over ∞ .

Likewise, two algebraic cycles \mathscr{Z} , \mathscr{W} , flat over spec \mathbb{Z} of respective dimensions d + 1 and e + 1, can be thought of as families of cycles $Z_p \subseteq X_p$ and $W_p \subseteq X_p$ of dimensions d and e respectively. To simplify matters, we assume that their generic fibers Z_{∞} and W_{∞} are homologous to zero in X_{∞} and have disjoint supports.

If d + e = n - 1, then \mathscr{X} and \mathscr{W} are of complementary dimension in \mathscr{X} . In this case their Arakelov intersection number, or height pairing

 $\langle \mathscr{Z}, \mathscr{W} \rangle \in \mathbb{R}$

is defined ([A1], [A2], [B1], [Be], [GS], [G]). This mysterious number decomposes as a sum

$$\langle Z_{\infty}, W_{\infty} \rangle_{\infty} + \langle \mathscr{Z}, \mathscr{W} \rangle_{fte}.$$

Heuristically, the finite part $\langle \mathscr{Z}, \mathscr{W} \rangle_{fte}$ can be considered as a sum

$$\sum_{\substack{p \in \mathbb{N} \\ \text{prime}}} \langle Z_p, W_p \rangle_p$$

where the contribution at the prime p is

 $\langle Z_p, W_p \rangle_p = \log p \times (\# \text{ points in } Z_p \cap W_p, \text{ counting multiplicities})$

when \mathscr{X} has good reduction at p. The archimedean contribution is given by the

Received February 6, 1990.

Supported in part by grant DMS-8601530 from the National Science Foundation and an American Mathematical Society Fellowship.